离散元素建模中混合消息传递和共享内存并行性的性能研究

D. Henty
{"title":"离散元素建模中混合消息传递和共享内存并行性的性能研究","authors":"D. Henty","doi":"10.1109/SC.2000.10005","DOIUrl":null,"url":null,"abstract":"The current trend in HPC hardware is towards clusters of shared-memory (SMP) compute nodes. For applications developers the major question is how best to program these SMP clusters. To address this we study an algorithm from Discrete Element Modeling, parallelised using both the message-passing and shared-memory models simultaneously (\"hybrid\" parallelisation). The natural load-balancing methods are different in the two parallel models, the shared-memory method being in principle more efficient for very load-imbalanced problems. It is therefore possible that hybrid parallelism will be beneficial on SMP clusters. We benchmark MPI and OpenMP implementations of the algorithm on MPP, SMP and cluster architectures, and evaluate the effectiveness of hybrid parallelism. Although we observe cases where OpenMP is more efficient than MPI on a single SMP node, we conclude that our current OpenMP implementation is not yet efficient enough for hybrid parallelism to outperform pure message-passing on an SMP cluster.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"Performance of Hybrid Message-Passing and Shared-Memory Parallelism for Discrete Element Modeling\",\"authors\":\"D. Henty\",\"doi\":\"10.1109/SC.2000.10005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current trend in HPC hardware is towards clusters of shared-memory (SMP) compute nodes. For applications developers the major question is how best to program these SMP clusters. To address this we study an algorithm from Discrete Element Modeling, parallelised using both the message-passing and shared-memory models simultaneously (\\\"hybrid\\\" parallelisation). The natural load-balancing methods are different in the two parallel models, the shared-memory method being in principle more efficient for very load-imbalanced problems. It is therefore possible that hybrid parallelism will be beneficial on SMP clusters. We benchmark MPI and OpenMP implementations of the algorithm on MPP, SMP and cluster architectures, and evaluate the effectiveness of hybrid parallelism. Although we observe cases where OpenMP is more efficient than MPI on a single SMP node, we conclude that our current OpenMP implementation is not yet efficient enough for hybrid parallelism to outperform pure message-passing on an SMP cluster.\",\"PeriodicalId\":228250,\"journal\":{\"name\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2000.10005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

当前高性能计算硬件的发展趋势是面向共享内存(SMP)计算节点集群。对于应用程序开发人员来说,主要的问题是如何最好地对这些SMP集群进行编程。为了解决这个问题,我们研究了离散元素建模中的一种算法,同时使用消息传递和共享内存模型进行并行化(“混合”并行化)。自然负载均衡方法在两个并行模型中是不同的,共享内存方法原则上对负载非常不平衡的问题更有效。因此,混合并行可能对SMP集群有益。我们在MPP、SMP和集群架构上对该算法的MPI和OpenMP实现进行了基准测试,并评估了混合并行的有效性。尽管我们观察到在单个SMP节点上OpenMP比MPI更有效的情况,但我们得出的结论是,我们当前的OpenMP实现还不够高效,混合并行性无法在SMP集群上胜过纯消息传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Hybrid Message-Passing and Shared-Memory Parallelism for Discrete Element Modeling
The current trend in HPC hardware is towards clusters of shared-memory (SMP) compute nodes. For applications developers the major question is how best to program these SMP clusters. To address this we study an algorithm from Discrete Element Modeling, parallelised using both the message-passing and shared-memory models simultaneously ("hybrid" parallelisation). The natural load-balancing methods are different in the two parallel models, the shared-memory method being in principle more efficient for very load-imbalanced problems. It is therefore possible that hybrid parallelism will be beneficial on SMP clusters. We benchmark MPI and OpenMP implementations of the algorithm on MPP, SMP and cluster architectures, and evaluate the effectiveness of hybrid parallelism. Although we observe cases where OpenMP is more efficient than MPI on a single SMP node, we conclude that our current OpenMP implementation is not yet efficient enough for hybrid parallelism to outperform pure message-passing on an SMP cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信