高频数据积分矩的广义方法

Jia Li, D. Xiu
{"title":"高频数据积分矩的广义方法","authors":"Jia Li, D. Xiu","doi":"10.2139/ssrn.2560343","DOIUrl":null,"url":null,"abstract":"We propose a semiparametric two-step inference procedure for a finite-dimensional parameter based on moment conditions constructed from high-frequency data. The population moment conditions take the form of temporally integrated functionals of state-variable processes that include the latent stochastic volatility process of an asset. In the first step, we nonparametrically recover the volatility path from high-frequency asset returns. The nonparametric volatility estimator is then used to form sample moment functions in the second-step GMM estimation, which requires the correction of a high-order nonlinearity bias from the first step. We show that the proposed estimator is consistent and asymptotically mixed Gaussian and propose a consistent estimator for the conditional asymptotic variance. We also construct a Bierens-type consistent specification test. These infill asymptotic results are based on a novel empirical-process-type theory for general integrated functionals of noisy semimartingale processes.","PeriodicalId":224732,"journal":{"name":"Chicago Booth Research Paper Series","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Generalized Method of Integrated Moments for High-Frequency Data\",\"authors\":\"Jia Li, D. Xiu\",\"doi\":\"10.2139/ssrn.2560343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a semiparametric two-step inference procedure for a finite-dimensional parameter based on moment conditions constructed from high-frequency data. The population moment conditions take the form of temporally integrated functionals of state-variable processes that include the latent stochastic volatility process of an asset. In the first step, we nonparametrically recover the volatility path from high-frequency asset returns. The nonparametric volatility estimator is then used to form sample moment functions in the second-step GMM estimation, which requires the correction of a high-order nonlinearity bias from the first step. We show that the proposed estimator is consistent and asymptotically mixed Gaussian and propose a consistent estimator for the conditional asymptotic variance. We also construct a Bierens-type consistent specification test. These infill asymptotic results are based on a novel empirical-process-type theory for general integrated functionals of noisy semimartingale processes.\",\"PeriodicalId\":224732,\"journal\":{\"name\":\"Chicago Booth Research Paper Series\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chicago Booth Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2560343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chicago Booth Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2560343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

基于高频数据构造的矩条件,提出了有限维参数的半参数两步推理方法。人口矩条件采用状态变量过程的时间积分函数的形式,其中包括资产的潜在随机波动过程。在第一步中,我们从高频资产收益中非参数地恢复波动路径。然后,在第二步GMM估计中使用非参数波动估计量来形成样本矩函数,这需要对第一步的高阶非线性偏差进行校正。我们证明了所提出的估计量是一致的渐近混合高斯估计量,并给出了条件渐近方差的一致估计量。我们还构造了一个bierens型一致性规格检验。这些填充渐近结果是基于一个新的经验-过程型理论的一般积分泛函的噪声半鞅过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Method of Integrated Moments for High-Frequency Data
We propose a semiparametric two-step inference procedure for a finite-dimensional parameter based on moment conditions constructed from high-frequency data. The population moment conditions take the form of temporally integrated functionals of state-variable processes that include the latent stochastic volatility process of an asset. In the first step, we nonparametrically recover the volatility path from high-frequency asset returns. The nonparametric volatility estimator is then used to form sample moment functions in the second-step GMM estimation, which requires the correction of a high-order nonlinearity bias from the first step. We show that the proposed estimator is consistent and asymptotically mixed Gaussian and propose a consistent estimator for the conditional asymptotic variance. We also construct a Bierens-type consistent specification test. These infill asymptotic results are based on a novel empirical-process-type theory for general integrated functionals of noisy semimartingale processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信