基于粒子轨迹DFT系数的复杂场景活动性分析

Jingxin Xu, S. Denman, S. Sridharan, C. Fookes
{"title":"基于粒子轨迹DFT系数的复杂场景活动性分析","authors":"Jingxin Xu, S. Denman, S. Sridharan, C. Fookes","doi":"10.1109/AVSS.2012.6","DOIUrl":null,"url":null,"abstract":"Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenesusing a \"bag of particle trajectories\". Particle trajectoriesare extracted from foreground regions within short video clips using particle video, which estimates long rangemotion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Activity Analysis in Complicated Scenes Using DFT Coefficients of Particle Trajectories\",\"authors\":\"Jingxin Xu, S. Denman, S. Sridharan, C. Fookes\",\"doi\":\"10.1109/AVSS.2012.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenesusing a \\\"bag of particle trajectories\\\". Particle trajectoriesare extracted from foreground regions within short video clips using particle video, which estimates long rangemotion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在拥挤的场景中建模活动是非常具有挑战性的,因为在复杂的场景中目标跟踪不鲁棒,光流不能捕捉到远距离运动。我们提出了一种使用“粒子轨迹袋”来分析拥挤场景中的活动的新方法。使用粒子视频从短视频剪辑的前景区域提取粒子轨迹,与只关注帧间运动的光流相比,它可以估计远距离运动。我们的应用包括时间视频分割和异常检测,我们在包含复杂场景的几个真实世界数据集上进行评估。我们表明,我们的方法在这两项任务中都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity Analysis in Complicated Scenes Using DFT Coefficients of Particle Trajectories
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenesusing a "bag of particle trajectories". Particle trajectoriesare extracted from foreground regions within short video clips using particle video, which estimates long rangemotion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信