基于广义回归神经网络的风预报

Chun-Yao Lee, Yan-Lou He
{"title":"基于广义回归神经网络的风预报","authors":"Chun-Yao Lee, Yan-Lou He","doi":"10.1109/ISDEA.2012.520","DOIUrl":null,"url":null,"abstract":"This study adopts the general regression neural network (GRNN) to predict wind speeds. The training data sets are the real wind speeds obtained from CKS International Airport. The 5 days (120 hours) of the three year from 2006 to 2008 is selected as an example to appraise the prediction performance by using GRNN. Comparing to the traditional linear time-series-based model, the superiority of GRNN method to wind prediction can be valid.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Wind Prediction Based on General Regression Neural Network\",\"authors\":\"Chun-Yao Lee, Yan-Lou He\",\"doi\":\"10.1109/ISDEA.2012.520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study adopts the general regression neural network (GRNN) to predict wind speeds. The training data sets are the real wind speeds obtained from CKS International Airport. The 5 days (120 hours) of the three year from 2006 to 2008 is selected as an example to appraise the prediction performance by using GRNN. Comparing to the traditional linear time-series-based model, the superiority of GRNN method to wind prediction can be valid.\",\"PeriodicalId\":267532,\"journal\":{\"name\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDEA.2012.520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本研究采用广义回归神经网络(GRNN)进行风速预测。训练数据集为从中港国际机场获得的真实风速。以2006 - 2008年3年的5天(120小时)为例,评价GRNN的预测效果。与传统的基于线性时间序列的模型相比,GRNN方法在风力预测方面的优越性是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind Prediction Based on General Regression Neural Network
This study adopts the general regression neural network (GRNN) to predict wind speeds. The training data sets are the real wind speeds obtained from CKS International Airport. The 5 days (120 hours) of the three year from 2006 to 2008 is selected as an example to appraise the prediction performance by using GRNN. Comparing to the traditional linear time-series-based model, the superiority of GRNN method to wind prediction can be valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信