G. Alonso, Win Bausch, C. Pautasso, A. Kahn, M. Hallett
{"title":"虚拟实验室的可靠计算","authors":"G. Alonso, Win Bausch, C. Pautasso, A. Kahn, M. Hallett","doi":"10.1109/ICDE.2001.914834","DOIUrl":null,"url":null,"abstract":"Many scientific disciplines are shifting from in vitro to in silico research as more physical processes and natural phenomena are examined in a computer (in silico) instead of being observed (in vitro). In many of these virtual laboratories, the computations involved are very complex and long lived. Currently, users are required to manually handle almost all aspects of such computations, including their dependability. Not surprisingly, this is a major bottleneck and a significant source of inefficiencies. To address this issue, we have developed BioOpera, an extensible process support management system for virtual laboratories. The authors briefly discuss the architecture and functionality of BioOpera and show how it can be used to efficiently manage long lived computations.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Dependable computing in virtual laboratories\",\"authors\":\"G. Alonso, Win Bausch, C. Pautasso, A. Kahn, M. Hallett\",\"doi\":\"10.1109/ICDE.2001.914834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many scientific disciplines are shifting from in vitro to in silico research as more physical processes and natural phenomena are examined in a computer (in silico) instead of being observed (in vitro). In many of these virtual laboratories, the computations involved are very complex and long lived. Currently, users are required to manually handle almost all aspects of such computations, including their dependability. Not surprisingly, this is a major bottleneck and a significant source of inefficiencies. To address this issue, we have developed BioOpera, an extensible process support management system for virtual laboratories. The authors briefly discuss the architecture and functionality of BioOpera and show how it can be used to efficiently manage long lived computations.\",\"PeriodicalId\":431818,\"journal\":{\"name\":\"Proceedings 17th International Conference on Data Engineering\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2001.914834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many scientific disciplines are shifting from in vitro to in silico research as more physical processes and natural phenomena are examined in a computer (in silico) instead of being observed (in vitro). In many of these virtual laboratories, the computations involved are very complex and long lived. Currently, users are required to manually handle almost all aspects of such computations, including their dependability. Not surprisingly, this is a major bottleneck and a significant source of inefficiencies. To address this issue, we have developed BioOpera, an extensible process support management system for virtual laboratories. The authors briefly discuss the architecture and functionality of BioOpera and show how it can be used to efficiently manage long lived computations.