相对论玻尔兹曼方程的欧拉极限

Dongcheng Yang and Hongjun Yu
{"title":"相对论玻尔兹曼方程的欧拉极限","authors":"Dongcheng Yang and Hongjun Yu","doi":"10.4208/cmaa.2023-0001","DOIUrl":null,"url":null,"abstract":"In this work we prove the existence and uniqueness theorems of the solutions to the relativistic Boltzmann equation for analytic initial fluctuations on a time interval independent of the Knudsen number ǫ > 0. As ǫ → 0, we prove that the solution of the relativistic Boltzmann equation tends to the local relativistic Maxwellian, whose fluid-dynamical parameters solve the relativistic Euler equations and the convergence rate is also obtained. Due to this convergence rate, the Hilbert expansion is verified in the short time interval for the relativistic Boltzmann equation. We also consider the physically important initial layer problem. As a by-product, an existence theorem for the relativistic Euler equations without the assumption of the non-vacuum fluid states is obtained. AMS subject classifications: 35Q99, 82A47","PeriodicalId":371957,"journal":{"name":"Communications in Mathematical Analysis and Applications","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Euler Limit of the Relativistic Boltzmann Equation\",\"authors\":\"Dongcheng Yang and Hongjun Yu\",\"doi\":\"10.4208/cmaa.2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we prove the existence and uniqueness theorems of the solutions to the relativistic Boltzmann equation for analytic initial fluctuations on a time interval independent of the Knudsen number ǫ > 0. As ǫ → 0, we prove that the solution of the relativistic Boltzmann equation tends to the local relativistic Maxwellian, whose fluid-dynamical parameters solve the relativistic Euler equations and the convergence rate is also obtained. Due to this convergence rate, the Hilbert expansion is verified in the short time interval for the relativistic Boltzmann equation. We also consider the physically important initial layer problem. As a by-product, an existence theorem for the relativistic Euler equations without the assumption of the non-vacuum fluid states is obtained. AMS subject classifications: 35Q99, 82A47\",\"PeriodicalId\":371957,\"journal\":{\"name\":\"Communications in Mathematical Analysis and Applications\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/cmaa.2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cmaa.2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了在与Knudsen数无关的时间区间上解析初始波动的相对论性Boltzmann方程解的存在性和唯一性定理。当ρ→0时,证明了相对论性玻尔兹曼方程的解趋向于局部相对论性麦克斯韦方程组,其流体动力学参数可解相对论性欧拉方程,并得到了收敛速率。由于这种收敛速度,希尔伯特展开在较短的时间间隔内验证了相对论玻尔兹曼方程。我们还考虑了物理上重要的初始层问题。作为副产物,得到了不考虑非真空流体状态的相对论欧拉方程的存在性定理。AMS学科分类:35Q99, 82A47
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Euler Limit of the Relativistic Boltzmann Equation
In this work we prove the existence and uniqueness theorems of the solutions to the relativistic Boltzmann equation for analytic initial fluctuations on a time interval independent of the Knudsen number ǫ > 0. As ǫ → 0, we prove that the solution of the relativistic Boltzmann equation tends to the local relativistic Maxwellian, whose fluid-dynamical parameters solve the relativistic Euler equations and the convergence rate is also obtained. Due to this convergence rate, the Hilbert expansion is verified in the short time interval for the relativistic Boltzmann equation. We also consider the physically important initial layer problem. As a by-product, an existence theorem for the relativistic Euler equations without the assumption of the non-vacuum fluid states is obtained. AMS subject classifications: 35Q99, 82A47
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信