停止增量功能自动诊断的正式条件

Luca Amati, C. Bolchini, F. Salice, F. Franzoso
{"title":"停止增量功能自动诊断的正式条件","authors":"Luca Amati, C. Bolchini, F. Salice, F. Franzoso","doi":"10.1109/DSD.2010.98","DOIUrl":null,"url":null,"abstract":"iAF2D (incremental Automatic Functional Fault Detective) is a methodology for the identification of the faulty component in a complex system using data collected from a test session. It is an incremental approach based on a Bayesian Belief Network, where the model of the system under analysis is extracted from a faulty signature description. iAF2D reduces time, cost and efforts during the diagnostic phase by implementing a step-by-step selection of the tests to be executed from the set of available tests. This paper focuses on the evolution of the BBN nodes probabilities, to define a stop criterion to interrupt the diagnosis process when additional test outcomes would not provide further useful information for identifying the faulty candidate. Methodology validation is performed on a set of experimental results.","PeriodicalId":356885,"journal":{"name":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Formal Condition to Stop an Incremental Automatic Functional Diagnosis\",\"authors\":\"Luca Amati, C. Bolchini, F. Salice, F. Franzoso\",\"doi\":\"10.1109/DSD.2010.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"iAF2D (incremental Automatic Functional Fault Detective) is a methodology for the identification of the faulty component in a complex system using data collected from a test session. It is an incremental approach based on a Bayesian Belief Network, where the model of the system under analysis is extracted from a faulty signature description. iAF2D reduces time, cost and efforts during the diagnostic phase by implementing a step-by-step selection of the tests to be executed from the set of available tests. This paper focuses on the evolution of the BBN nodes probabilities, to define a stop criterion to interrupt the diagnosis process when additional test outcomes would not provide further useful information for identifying the faulty candidate. Methodology validation is performed on a set of experimental results.\",\"PeriodicalId\":356885,\"journal\":{\"name\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2010.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2010.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

iAF2D(增量自动功能故障检测)是一种使用从测试会话中收集的数据来识别复杂系统中故障组件的方法。它是一种基于贝叶斯信念网络的增量方法,从错误的签名描述中提取待分析系统的模型。iAF2D通过从一组可用测试中逐步选择要执行的测试,减少了诊断阶段的时间、成本和工作量。本文的重点是BBN节点概率的演变,以定义一个停止准则,当额外的测试结果不能提供进一步有用的信息来识别错误的候选时,中断诊断过程。对一组实验结果进行了方法学验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Formal Condition to Stop an Incremental Automatic Functional Diagnosis
iAF2D (incremental Automatic Functional Fault Detective) is a methodology for the identification of the faulty component in a complex system using data collected from a test session. It is an incremental approach based on a Bayesian Belief Network, where the model of the system under analysis is extracted from a faulty signature description. iAF2D reduces time, cost and efforts during the diagnostic phase by implementing a step-by-step selection of the tests to be executed from the set of available tests. This paper focuses on the evolution of the BBN nodes probabilities, to define a stop criterion to interrupt the diagnosis process when additional test outcomes would not provide further useful information for identifying the faulty candidate. Methodology validation is performed on a set of experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信