基于深度信念网络的大数据降维研究:高光谱图像分类

D. M. S. Arsa, G. Jati, Aprinaldi Jasa Mantau, Ito Wasito
{"title":"基于深度信念网络的大数据降维研究:高光谱图像分类","authors":"D. M. S. Arsa, G. Jati, Aprinaldi Jasa Mantau, Ito Wasito","doi":"10.1109/IWBIS.2016.7872892","DOIUrl":null,"url":null,"abstract":"The high dimensionality in big data need a heavy computation when the analysis needed. This research proposed a dimensionality reduction using deep belief network (DBN). We used hyperspectral images as case study. The hyperspectral image is a high dimensional image. Some researched have been proposed to reduce hyperspectral image dimension such as using LDA and PCA in spectral-spatial hyperspectral image classification. This paper proposed a dimensionality reduction using deep belief network (DBN) for hyperspectral image classification. In proposed framework, we use two DBNs. First DBN used to reduce the dimension of spectral bands and the second DBN used to extract spectral-spatial feature and as classifier. We used Indian Pines data set that consist of 16 classes and we compared DBN and PCA performance. The result indicates that by using DBN as dimensionality reduction method performed better than PCA in hyperspectral image classification.","PeriodicalId":193821,"journal":{"name":"2016 International Workshop on Big Data and Information Security (IWBIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Dimensionality reduction using deep belief network in big data case study: Hyperspectral image classification\",\"authors\":\"D. M. S. Arsa, G. Jati, Aprinaldi Jasa Mantau, Ito Wasito\",\"doi\":\"10.1109/IWBIS.2016.7872892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high dimensionality in big data need a heavy computation when the analysis needed. This research proposed a dimensionality reduction using deep belief network (DBN). We used hyperspectral images as case study. The hyperspectral image is a high dimensional image. Some researched have been proposed to reduce hyperspectral image dimension such as using LDA and PCA in spectral-spatial hyperspectral image classification. This paper proposed a dimensionality reduction using deep belief network (DBN) for hyperspectral image classification. In proposed framework, we use two DBNs. First DBN used to reduce the dimension of spectral bands and the second DBN used to extract spectral-spatial feature and as classifier. We used Indian Pines data set that consist of 16 classes and we compared DBN and PCA performance. The result indicates that by using DBN as dimensionality reduction method performed better than PCA in hyperspectral image classification.\",\"PeriodicalId\":193821,\"journal\":{\"name\":\"2016 International Workshop on Big Data and Information Security (IWBIS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Workshop on Big Data and Information Security (IWBIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBIS.2016.7872892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS.2016.7872892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于大数据的高维数,在进行分析时需要进行大量的计算。本文提出了一种基于深度信念网络(DBN)的降维方法。我们使用高光谱图像作为案例研究。高光谱图像是一种高维图像。在光谱-空间高光谱图像分类中,提出了一些降低高光谱图像维数的研究方法,如LDA和PCA。提出了一种基于深度信念网络的高光谱图像降维分类方法。在建议的框架中,我们使用两个dbn。第一种DBN用于光谱波段降维,第二种DBN用于提取光谱空间特征并作为分类器。我们使用了包含16个类别的Indian Pines数据集,并比较了DBN和PCA的性能。结果表明,采用DBN作为降维方法对高光谱图像进行分类的效果优于PCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensionality reduction using deep belief network in big data case study: Hyperspectral image classification
The high dimensionality in big data need a heavy computation when the analysis needed. This research proposed a dimensionality reduction using deep belief network (DBN). We used hyperspectral images as case study. The hyperspectral image is a high dimensional image. Some researched have been proposed to reduce hyperspectral image dimension such as using LDA and PCA in spectral-spatial hyperspectral image classification. This paper proposed a dimensionality reduction using deep belief network (DBN) for hyperspectral image classification. In proposed framework, we use two DBNs. First DBN used to reduce the dimension of spectral bands and the second DBN used to extract spectral-spatial feature and as classifier. We used Indian Pines data set that consist of 16 classes and we compared DBN and PCA performance. The result indicates that by using DBN as dimensionality reduction method performed better than PCA in hyperspectral image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信