使用钢管混凝土柱的传统钢和钢-混凝土组合弯矩框架的抗震性能评估

António Silva, Yadong Jiang, L. Macedo, J. Castro, R. Monteiro
{"title":"使用钢管混凝土柱的传统钢和钢-混凝土组合弯矩框架的抗震性能评估","authors":"António Silva, Yadong Jiang, L. Macedo, J. Castro, R. Monteiro","doi":"10.4995/ASCCS2018.2018.7165","DOIUrl":null,"url":null,"abstract":"The research reported in this paper focuses on the assessment of the seismic performance of conventional steel moment-resisting frames (MRFs) and steel-concrete composite moment-resisting frames employing circular Concrete-Filled Steel Tube (CFST) columns. Two comparable archetypes (i.e. one steel MRF, with steel columns and steel beams; and one composite MRF, with circular CFST columns and steel beams) are designed, and used as the basis for comparison between the seismic performance associated with each typology. Both structures are designed against earthquake loads following the recommendations of Eurocode 8. The comparison of the obtained design solutions allows concluding that the amount of steel associated with the main structural members is higher for the steel-only archetype, even though the composite MRF has the higher level of lateral stiffness. This aspect is particularly relevant when one considers that a minimum level of lateral stiffness (associated with the P-Δ inter-storey drift sensitivity coefficient, θ), is imposed by the European code, which may ultimately govern the design process. The two case-studies are then numerically modelled in OpenSees, and their seismic performance is assessed through fragility assessment for a number of relevant limit states, and, finally, earthquake-induced loss estimation. In general, the results obtained clearly indicate that the composite MRF with circular CFST columns exhibits better seismic performance than the equivalent steel-only archetype. This is noticeably shown in the comparison of the fragility curves associated with the collapse limit state, which tend to show substantially higher probabilities of exceedance, at similar levels of 1st-mode spectral acceleration, for the steel-only case. Furthermore, seismic losses at several seismic intensity levels of interest tend to be higher for the steel MRF.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic performance assessment of conventional steel and steel-concrete composite moment frames using CFST columns\",\"authors\":\"António Silva, Yadong Jiang, L. Macedo, J. Castro, R. Monteiro\",\"doi\":\"10.4995/ASCCS2018.2018.7165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research reported in this paper focuses on the assessment of the seismic performance of conventional steel moment-resisting frames (MRFs) and steel-concrete composite moment-resisting frames employing circular Concrete-Filled Steel Tube (CFST) columns. Two comparable archetypes (i.e. one steel MRF, with steel columns and steel beams; and one composite MRF, with circular CFST columns and steel beams) are designed, and used as the basis for comparison between the seismic performance associated with each typology. Both structures are designed against earthquake loads following the recommendations of Eurocode 8. The comparison of the obtained design solutions allows concluding that the amount of steel associated with the main structural members is higher for the steel-only archetype, even though the composite MRF has the higher level of lateral stiffness. This aspect is particularly relevant when one considers that a minimum level of lateral stiffness (associated with the P-Δ inter-storey drift sensitivity coefficient, θ), is imposed by the European code, which may ultimately govern the design process. The two case-studies are then numerically modelled in OpenSees, and their seismic performance is assessed through fragility assessment for a number of relevant limit states, and, finally, earthquake-induced loss estimation. In general, the results obtained clearly indicate that the composite MRF with circular CFST columns exhibits better seismic performance than the equivalent steel-only archetype. This is noticeably shown in the comparison of the fragility curves associated with the collapse limit state, which tend to show substantially higher probabilities of exceedance, at similar levels of 1st-mode spectral acceleration, for the steel-only case. Furthermore, seismic losses at several seismic intensity levels of interest tend to be higher for the steel MRF.\",\"PeriodicalId\":320267,\"journal\":{\"name\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/ASCCS2018.2018.7165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.7165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的研究重点是对传统钢框架和采用圆形钢管混凝土柱的钢-混凝土组合框架的抗震性能进行了评估。两个可比较的原型(即一个钢MRF,有钢柱和钢梁;设计了一个组合式组合梁框架(包含圆形钢管混凝土柱和钢梁),并将其作为比较不同类型框架抗震性能的基础。这两个结构都是按照欧洲规范8的建议进行抗震设计的。通过对所获得的设计方案的比较可以得出结论,即使复合MRF具有更高的横向刚度水平,但对于纯钢原型,与主要结构构件相关的钢材量更高。这方面是特别相关的,当一个人考虑到最小水平的横向刚度(与P-Δ层间漂移敏感系数,θ),是由欧洲规范强加的,这可能最终支配设计过程。然后在OpenSees中对这两个案例进行数值模拟,并通过一些相关极限状态的易损性评估来评估它们的抗震性能,最后评估地震引起的损失。总体而言,研究结果清楚地表明,圆形钢管混凝土柱复合结构的抗震性能优于纯钢结构原型。这在与崩溃极限状态相关的脆性曲线的比较中得到了明显的体现,对于仅钢的情况,在类似的第一模谱加速度水平下,脆性曲线往往显示出高得多的超出概率。此外,在几个感兴趣的地震烈度水平上,钢MRF的地震损失往往更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic performance assessment of conventional steel and steel-concrete composite moment frames using CFST columns
The research reported in this paper focuses on the assessment of the seismic performance of conventional steel moment-resisting frames (MRFs) and steel-concrete composite moment-resisting frames employing circular Concrete-Filled Steel Tube (CFST) columns. Two comparable archetypes (i.e. one steel MRF, with steel columns and steel beams; and one composite MRF, with circular CFST columns and steel beams) are designed, and used as the basis for comparison between the seismic performance associated with each typology. Both structures are designed against earthquake loads following the recommendations of Eurocode 8. The comparison of the obtained design solutions allows concluding that the amount of steel associated with the main structural members is higher for the steel-only archetype, even though the composite MRF has the higher level of lateral stiffness. This aspect is particularly relevant when one considers that a minimum level of lateral stiffness (associated with the P-Δ inter-storey drift sensitivity coefficient, θ), is imposed by the European code, which may ultimately govern the design process. The two case-studies are then numerically modelled in OpenSees, and their seismic performance is assessed through fragility assessment for a number of relevant limit states, and, finally, earthquake-induced loss estimation. In general, the results obtained clearly indicate that the composite MRF with circular CFST columns exhibits better seismic performance than the equivalent steel-only archetype. This is noticeably shown in the comparison of the fragility curves associated with the collapse limit state, which tend to show substantially higher probabilities of exceedance, at similar levels of 1st-mode spectral acceleration, for the steel-only case. Furthermore, seismic losses at several seismic intensity levels of interest tend to be higher for the steel MRF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信