从多个基因组数据源学习有向无环图

F. Nikolay, M. Pesavento
{"title":"从多个基因组数据源学习有向无环图","authors":"F. Nikolay, M. Pesavento","doi":"10.23919/EUSIPCO.2017.8081535","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning directed-acyclic-graphs from multiple genomic data sources\",\"authors\":\"F. Nikolay, M. Pesavento\",\"doi\":\"10.23919/EUSIPCO.2017.8081535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文基于噪声双敲除数据和遗传相互作用谱数据,研究了描述一组基因之间相互作用的有向无环图的拓扑学习问题。我们提出了一种新的线性整数优化方法来识别基因之间复杂的生物依赖关系,并计算最匹配数据的有向无环图的拓扑结构。最后,我们将序列可扩展性技术应用于大型基因集以及我们提出的算法,以便为实验数据提供统计显着的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning directed-acyclic-graphs from multiple genomic data sources
In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信