B. Gupta, R. Goodman, F. Jiang, Y. Tai, S. Tung, Chih-Ming Ho
{"title":"模拟VLSI系统的主动减阻","authors":"B. Gupta, R. Goodman, F. Jiang, Y. Tai, S. Tung, Chih-Ming Ho","doi":"10.1109/MNNFS.1996.493771","DOIUrl":null,"url":null,"abstract":"We describe an analog CMOS VLSI system that can process real-time signals from surface-mounted shear stress sensors to detect regions of high shear stress along a surface in an airflow. The outputs of the CMOS circuit are used to actuate micromachined flaps with the goal of reducing this high shear stress on the surface and thereby lowering the total drag. We have designed, fabricated, and tested parts of this system in a wind tunnel in laminar and turbulent flow regimes.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"441 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Analog VLSI system for active drag reduction\",\"authors\":\"B. Gupta, R. Goodman, F. Jiang, Y. Tai, S. Tung, Chih-Ming Ho\",\"doi\":\"10.1109/MNNFS.1996.493771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an analog CMOS VLSI system that can process real-time signals from surface-mounted shear stress sensors to detect regions of high shear stress along a surface in an airflow. The outputs of the CMOS circuit are used to actuate micromachined flaps with the goal of reducing this high shear stress on the surface and thereby lowering the total drag. We have designed, fabricated, and tested parts of this system in a wind tunnel in laminar and turbulent flow regimes.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"441 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe an analog CMOS VLSI system that can process real-time signals from surface-mounted shear stress sensors to detect regions of high shear stress along a surface in an airflow. The outputs of the CMOS circuit are used to actuate micromachined flaps with the goal of reducing this high shear stress on the surface and thereby lowering the total drag. We have designed, fabricated, and tested parts of this system in a wind tunnel in laminar and turbulent flow regimes.