S. Kassing, Debopam Bhattacherjee, A. Águas, Jens Eirik Saethre, Ankit Singla
{"title":"与希帕蒂娅一起探索“来自太空的互联网”","authors":"S. Kassing, Debopam Bhattacherjee, A. Águas, Jens Eirik Saethre, Ankit Singla","doi":"10.1145/3419394.3423635","DOIUrl":null,"url":null,"abstract":"SpaceX, Amazon, and others plan to put thousands of satellites in low Earth orbit to provide global low-latency broadband Internet. SpaceX's plans have matured quickly, such that their underdeployment satellite constellation is already the largest in history, and may start offering service in 2020. The proposed constellations hold great promise, but also present new challenges for networking. To enable research in this exciting space, we present Hypatia, a framework for simulating and visualizing the network behavior of these constellations by incorporating their unique characteristics, such as high-velocity orbital motion. Using publicly available design details for the upcoming networks to drive our simulator, we characterize the expected behavior of these networks, including latency and link utilization fluctuations over time, and the implications of these variations for congestion control and routing.","PeriodicalId":255324,"journal":{"name":"Proceedings of the ACM Internet Measurement Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Exploring the \\\"Internet from space\\\" with Hypatia\",\"authors\":\"S. Kassing, Debopam Bhattacherjee, A. Águas, Jens Eirik Saethre, Ankit Singla\",\"doi\":\"10.1145/3419394.3423635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SpaceX, Amazon, and others plan to put thousands of satellites in low Earth orbit to provide global low-latency broadband Internet. SpaceX's plans have matured quickly, such that their underdeployment satellite constellation is already the largest in history, and may start offering service in 2020. The proposed constellations hold great promise, but also present new challenges for networking. To enable research in this exciting space, we present Hypatia, a framework for simulating and visualizing the network behavior of these constellations by incorporating their unique characteristics, such as high-velocity orbital motion. Using publicly available design details for the upcoming networks to drive our simulator, we characterize the expected behavior of these networks, including latency and link utilization fluctuations over time, and the implications of these variations for congestion control and routing.\",\"PeriodicalId\":255324,\"journal\":{\"name\":\"Proceedings of the ACM Internet Measurement Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Internet Measurement Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3419394.3423635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Internet Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419394.3423635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SpaceX, Amazon, and others plan to put thousands of satellites in low Earth orbit to provide global low-latency broadband Internet. SpaceX's plans have matured quickly, such that their underdeployment satellite constellation is already the largest in history, and may start offering service in 2020. The proposed constellations hold great promise, but also present new challenges for networking. To enable research in this exciting space, we present Hypatia, a framework for simulating and visualizing the network behavior of these constellations by incorporating their unique characteristics, such as high-velocity orbital motion. Using publicly available design details for the upcoming networks to drive our simulator, we characterize the expected behavior of these networks, including latency and link utilization fluctuations over time, and the implications of these variations for congestion control and routing.