解码二进制BCH码

L. Joiner, J. Komo
{"title":"解码二进制BCH码","authors":"L. Joiner, J. Komo","doi":"10.1109/SECON.1995.513059","DOIUrl":null,"url":null,"abstract":"BCH codes are powerful error-correcting codes. Algorithms used for decoding must be able to find the error locations, and for nonbinary codes, the error magnitudes. One of the most efficient algorithms for decoding BCH codes is Berlekamp's algorithm. To find the error locations the algorithm must solve a set of t equations in t unknowns. This paper explores, for binary BCH codes, a new method that uses half of the unknowns to determine the other unknowns, thus solving t/2 equations in t/2 unknowns. However, because of the reduced number of equations, the algorithm only iterates half the number of times. The performance of the new algorithm is shown to be superior to both Berlekamp's algorithm and a simplified algorithm in terms of execution times, which includes the field multiplications and additions and required memory.","PeriodicalId":334874,"journal":{"name":"Proceedings IEEE Southeastcon '95. Visualize the Future","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Decoding binary BCH codes\",\"authors\":\"L. Joiner, J. Komo\",\"doi\":\"10.1109/SECON.1995.513059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BCH codes are powerful error-correcting codes. Algorithms used for decoding must be able to find the error locations, and for nonbinary codes, the error magnitudes. One of the most efficient algorithms for decoding BCH codes is Berlekamp's algorithm. To find the error locations the algorithm must solve a set of t equations in t unknowns. This paper explores, for binary BCH codes, a new method that uses half of the unknowns to determine the other unknowns, thus solving t/2 equations in t/2 unknowns. However, because of the reduced number of equations, the algorithm only iterates half the number of times. The performance of the new algorithm is shown to be superior to both Berlekamp's algorithm and a simplified algorithm in terms of execution times, which includes the field multiplications and additions and required memory.\",\"PeriodicalId\":334874,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '95. Visualize the Future\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '95. Visualize the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1995.513059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '95. Visualize the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1995.513059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

BCH码是功能强大的纠错码。用于解码的算法必须能够找到错误位置,对于非二进制代码,必须能够找到错误大小。解码BCH码最有效的算法之一是Berlekamp算法。为了找到误差位置,该算法必须求解一组t个方程,其中包含t个未知数。对于二进制BCH码,本文探索了一种利用一半未知数确定其他未知数的新方法,从而求解t/2未知数中的t/2方程。然而,由于减少了方程的数量,算法只迭代了一半的次数。新算法在执行时间(包括字段的乘法和加法以及所需的内存)方面优于Berlekamp算法和简化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding binary BCH codes
BCH codes are powerful error-correcting codes. Algorithms used for decoding must be able to find the error locations, and for nonbinary codes, the error magnitudes. One of the most efficient algorithms for decoding BCH codes is Berlekamp's algorithm. To find the error locations the algorithm must solve a set of t equations in t unknowns. This paper explores, for binary BCH codes, a new method that uses half of the unknowns to determine the other unknowns, thus solving t/2 equations in t/2 unknowns. However, because of the reduced number of equations, the algorithm only iterates half the number of times. The performance of the new algorithm is shown to be superior to both Berlekamp's algorithm and a simplified algorithm in terms of execution times, which includes the field multiplications and additions and required memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信