N. Linz, J. Tröger, Jan Alexandersson, Maria Wolters, A. König, Philippe H. Robert
{"title":"从语义语言流畅性表现预测痴呆筛查和分期得分","authors":"N. Linz, J. Tröger, Jan Alexandersson, Maria Wolters, A. König, Philippe H. Robert","doi":"10.1109/ICDMW.2017.100","DOIUrl":null,"url":null,"abstract":"The standard dementia screening tool Mini Mental State Examination (MMSE) and the standard dementia staging tool Clinical Dementia Rating Scale (CDR) are prominent methods for answering questions whether a person might have dementia and about the dementia severity respectively. These methods are time consuming and require well-educated personnel to administer. Conversely, cognitive tests, such as the Semantic Verbal Fluency (SVF), demand little time. With this as a starting point, we investigate the relation between SVF results and MMSE/CDR-SOB scores. We use regression models to predict scores based on persons' SVF performance. Over a set of 179 patients with different degree of dementia, we achieve a mean absolute error of of 2.2 for MMSE (range 0–30) and 1.7 for CDR-SOB (range 0–18). True and predicted scores agree with a Cohen's κ of 0.76 for MMSE and 0.52 for CDR-SOB. We conclude that our approach has potential to serve as a cheap dementia screening, possibly even in non-clinical settings.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Predicting Dementia Screening and Staging Scores from Semantic Verbal Fluency Performance\",\"authors\":\"N. Linz, J. Tröger, Jan Alexandersson, Maria Wolters, A. König, Philippe H. Robert\",\"doi\":\"10.1109/ICDMW.2017.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard dementia screening tool Mini Mental State Examination (MMSE) and the standard dementia staging tool Clinical Dementia Rating Scale (CDR) are prominent methods for answering questions whether a person might have dementia and about the dementia severity respectively. These methods are time consuming and require well-educated personnel to administer. Conversely, cognitive tests, such as the Semantic Verbal Fluency (SVF), demand little time. With this as a starting point, we investigate the relation between SVF results and MMSE/CDR-SOB scores. We use regression models to predict scores based on persons' SVF performance. Over a set of 179 patients with different degree of dementia, we achieve a mean absolute error of of 2.2 for MMSE (range 0–30) and 1.7 for CDR-SOB (range 0–18). True and predicted scores agree with a Cohen's κ of 0.76 for MMSE and 0.52 for CDR-SOB. We conclude that our approach has potential to serve as a cheap dementia screening, possibly even in non-clinical settings.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Dementia Screening and Staging Scores from Semantic Verbal Fluency Performance
The standard dementia screening tool Mini Mental State Examination (MMSE) and the standard dementia staging tool Clinical Dementia Rating Scale (CDR) are prominent methods for answering questions whether a person might have dementia and about the dementia severity respectively. These methods are time consuming and require well-educated personnel to administer. Conversely, cognitive tests, such as the Semantic Verbal Fluency (SVF), demand little time. With this as a starting point, we investigate the relation between SVF results and MMSE/CDR-SOB scores. We use regression models to predict scores based on persons' SVF performance. Over a set of 179 patients with different degree of dementia, we achieve a mean absolute error of of 2.2 for MMSE (range 0–30) and 1.7 for CDR-SOB (range 0–18). True and predicted scores agree with a Cohen's κ of 0.76 for MMSE and 0.52 for CDR-SOB. We conclude that our approach has potential to serve as a cheap dementia screening, possibly even in non-clinical settings.