光核心网中电路与分组交换的最佳组合

P. Menon, R.A. Thompson
{"title":"光核心网中电路与分组交换的最佳组合","authors":"P. Menon, R.A. Thompson","doi":"10.1109/HPSR.2007.4281220","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to optimally partition a network's net capacity into circuit and packet switched channels. In our approach, the packet/burst switched channels are modeled as overflow channels. The overflow occurs from a group of circuit switched primary channels, which are semi-permanently allotted to a traffic source. Such a network provides balance between the statistical multiplexing gains of packet/burst switched channels and the minimum switching complexity of the circuit switching paradigm. We apply our design approach to optical core networks in which the complexity of packet/burst schemes are balanced with the cheap bulk carrying capacity of circuit switched channels. The blocking performance of various combinations of primary and overflow channels is analyzed and discussed, and optimized.","PeriodicalId":258491,"journal":{"name":"2007 Workshop on High Performance Switching and Routing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal Combination of Circuit and Packet Switching in Optical Core Networks\",\"authors\":\"P. Menon, R.A. Thompson\",\"doi\":\"10.1109/HPSR.2007.4281220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to optimally partition a network's net capacity into circuit and packet switched channels. In our approach, the packet/burst switched channels are modeled as overflow channels. The overflow occurs from a group of circuit switched primary channels, which are semi-permanently allotted to a traffic source. Such a network provides balance between the statistical multiplexing gains of packet/burst switched channels and the minimum switching complexity of the circuit switching paradigm. We apply our design approach to optical core networks in which the complexity of packet/burst schemes are balanced with the cheap bulk carrying capacity of circuit switched channels. The blocking performance of various combinations of primary and overflow channels is analyzed and discussed, and optimized.\",\"PeriodicalId\":258491,\"journal\":{\"name\":\"2007 Workshop on High Performance Switching and Routing\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Workshop on High Performance Switching and Routing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR.2007.4281220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Workshop on High Performance Switching and Routing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR.2007.4281220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种将网络容量最优地划分为电路交换信道和分组交换信道的方法。在我们的方法中,分组/突发交换通道被建模为溢出通道。溢出发生在一组电路交换的主信道中,这些信道被半永久地分配给一个流量源。这种网络在分组/突发交换信道的统计复用增益和电路交换范式的最小交换复杂性之间提供了平衡。我们将我们的设计方法应用于光核心网络,其中分组/突发方案的复杂性与电路交换通道的廉价批量承载能力相平衡。对主通道和溢流通道的各种组合的阻塞性能进行了分析和讨论,并进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Combination of Circuit and Packet Switching in Optical Core Networks
In this paper, we propose a method to optimally partition a network's net capacity into circuit and packet switched channels. In our approach, the packet/burst switched channels are modeled as overflow channels. The overflow occurs from a group of circuit switched primary channels, which are semi-permanently allotted to a traffic source. Such a network provides balance between the statistical multiplexing gains of packet/burst switched channels and the minimum switching complexity of the circuit switching paradigm. We apply our design approach to optical core networks in which the complexity of packet/burst schemes are balanced with the cheap bulk carrying capacity of circuit switched channels. The blocking performance of various combinations of primary and overflow channels is analyzed and discussed, and optimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信