多摄像机网络中运动的三维估计和可视化

Anil Kumar, P. Chavan, Sharatchandra V K, S. David, Philip Kelly, Noel E O 'connor
{"title":"多摄像机网络中运动的三维估计和可视化","authors":"Anil Kumar, P. Chavan, Sharatchandra V K, S. David, Philip Kelly, Noel E O 'connor","doi":"10.1109/IMVIP.2011.12","DOIUrl":null,"url":null,"abstract":"In this work, we develop image processing and computer vision techniques for visually tracking a tennis ball, in 3D, on a court instrumented with multiple low-cost IP cameras. The technique first obtains 2D ball tracking data from each camera view using 2D object tracking methods. Next, an automatic feature-based video synchronization method is applied. This technique uses the extracted 2D ball information from two or more camera views, plus camera calibration information. In order to find 3D trajectory, the temporal 3D locations of the ball is estimated using triangulation of correspondent 2D locations obtained from automatically synchronized videos. Furthermore, in order to improve the continuity of the tracked 3D ball during times when no two cameras have overlapping views of the ball location, we incorporate a physics-based trajectory model into the system. The resultant 3D ball tracks are then visualized in a virtual 3D graphical environment. Finally, we quantify the accuracy of our system in terms of reprojection error.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"3D Estimation and Visualization of Motion in a Multicamera Network for Sports\",\"authors\":\"Anil Kumar, P. Chavan, Sharatchandra V K, S. David, Philip Kelly, Noel E O 'connor\",\"doi\":\"10.1109/IMVIP.2011.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we develop image processing and computer vision techniques for visually tracking a tennis ball, in 3D, on a court instrumented with multiple low-cost IP cameras. The technique first obtains 2D ball tracking data from each camera view using 2D object tracking methods. Next, an automatic feature-based video synchronization method is applied. This technique uses the extracted 2D ball information from two or more camera views, plus camera calibration information. In order to find 3D trajectory, the temporal 3D locations of the ball is estimated using triangulation of correspondent 2D locations obtained from automatically synchronized videos. Furthermore, in order to improve the continuity of the tracked 3D ball during times when no two cameras have overlapping views of the ball location, we incorporate a physics-based trajectory model into the system. The resultant 3D ball tracks are then visualized in a virtual 3D graphical environment. Finally, we quantify the accuracy of our system in terms of reprojection error.\",\"PeriodicalId\":179414,\"journal\":{\"name\":\"2011 Irish Machine Vision and Image Processing Conference\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Irish Machine Vision and Image Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2011.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在这项工作中,我们开发了图像处理和计算机视觉技术,用于在带有多个低成本IP摄像机的球场上以3D方式视觉跟踪网球。该技术首先利用二维目标跟踪方法从每个摄像机视图获取二维球跟踪数据。其次,应用基于特征的自动视频同步方法。该技术使用从两个或多个摄像机视图中提取的2D球信息,以及摄像机校准信息。为了找到三维轨迹,利用从自动同步视频中获得的相应二维位置的三角剖分来估计球的时间三维位置。此外,为了在没有两个摄像机有球位置重叠视图的情况下提高跟踪的3D球的连续性,我们将基于物理的轨迹模型纳入系统。生成的3D球轨迹然后在虚拟3D图形环境中可视化。最后,我们根据重投影误差来量化系统的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Estimation and Visualization of Motion in a Multicamera Network for Sports
In this work, we develop image processing and computer vision techniques for visually tracking a tennis ball, in 3D, on a court instrumented with multiple low-cost IP cameras. The technique first obtains 2D ball tracking data from each camera view using 2D object tracking methods. Next, an automatic feature-based video synchronization method is applied. This technique uses the extracted 2D ball information from two or more camera views, plus camera calibration information. In order to find 3D trajectory, the temporal 3D locations of the ball is estimated using triangulation of correspondent 2D locations obtained from automatically synchronized videos. Furthermore, in order to improve the continuity of the tracked 3D ball during times when no two cameras have overlapping views of the ball location, we incorporate a physics-based trajectory model into the system. The resultant 3D ball tracks are then visualized in a virtual 3D graphical environment. Finally, we quantify the accuracy of our system in terms of reprojection error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信