{"title":"共振圆波导光子阵列的拓扑传感","authors":"Kiernan E. Arledge, B. Uchoa, Yi Zou, B. Weng","doi":"10.1103/PhysRevResearch.3.033106","DOIUrl":null,"url":null,"abstract":"We propose that a photonic array of resonant circular dielectric waveguides with subwavelength grating can be designed as a robust and sensitive topological chemical sensor. The device can detect trace amounts of a given chemical species through photonic edge modes that are impervious to most sources of disorder. We demonstrate the viability of the proposed sensor with a realistic simulation in the mid-infrared that accounts for the absorption loss introduced by chemical molecules in contact with a strongly coupled photonic lattice of resonators. Due to the topological nature of the device, its chemical sensitivity scales linearly with the system size and can reach the parts-per-billion range at the millimeter scale. Our findings suggest that topological chemical sensors could empower the development of novel on-chip integrated photonic sensing technologies.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"420 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topological sensing with photonic arrays of resonant circular waveguides\",\"authors\":\"Kiernan E. Arledge, B. Uchoa, Yi Zou, B. Weng\",\"doi\":\"10.1103/PhysRevResearch.3.033106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose that a photonic array of resonant circular dielectric waveguides with subwavelength grating can be designed as a robust and sensitive topological chemical sensor. The device can detect trace amounts of a given chemical species through photonic edge modes that are impervious to most sources of disorder. We demonstrate the viability of the proposed sensor with a realistic simulation in the mid-infrared that accounts for the absorption loss introduced by chemical molecules in contact with a strongly coupled photonic lattice of resonators. Due to the topological nature of the device, its chemical sensitivity scales linearly with the system size and can reach the parts-per-billion range at the millimeter scale. Our findings suggest that topological chemical sensors could empower the development of novel on-chip integrated photonic sensing technologies.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"420 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevResearch.3.033106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevResearch.3.033106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological sensing with photonic arrays of resonant circular waveguides
We propose that a photonic array of resonant circular dielectric waveguides with subwavelength grating can be designed as a robust and sensitive topological chemical sensor. The device can detect trace amounts of a given chemical species through photonic edge modes that are impervious to most sources of disorder. We demonstrate the viability of the proposed sensor with a realistic simulation in the mid-infrared that accounts for the absorption loss introduced by chemical molecules in contact with a strongly coupled photonic lattice of resonators. Due to the topological nature of the device, its chemical sensitivity scales linearly with the system size and can reach the parts-per-billion range at the millimeter scale. Our findings suggest that topological chemical sensors could empower the development of novel on-chip integrated photonic sensing technologies.