雷达目标识别的特征增强核字典学习

Zhicheng Wang, Hui Xu, Si Chen, Zhijun Zhang, M. Shi, Yesheng Gao
{"title":"雷达目标识别的特征增强核字典学习","authors":"Zhicheng Wang, Hui Xu, Si Chen, Zhijun Zhang, M. Shi, Yesheng Gao","doi":"10.1109/CISS57580.2022.9971193","DOIUrl":null,"url":null,"abstract":"Radar target recognition technology is widely used in modern society. With the improvement of radar range resolution, radar echo target and jamming background echo can be distinguished by radar high-resolution information. This paper presents a feature enhancement kernel dictionary learning (FEK-DL) method for automatic radar target recognition (ATR). In order to enhance features of images for data enhancement and noise suppression, a matrix approximation method is used for multi-structure feature extraction. Instead of using traditional linear dictionary learning method, non-linear kernel function is used to map the targets into a high-dimensional space, in order to obtain a better classification performance. The training method and optimization steps of FEK-DL are presented in this paper. We carried out the experiment based on radar dataset to demonstrate the effectiveness of the proposed classification algorithm. The experimental results show that the classification algorithm has better classification performance than some representative dictionary learning algorithms.","PeriodicalId":331510,"journal":{"name":"2022 3rd China International SAR Symposium (CISS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Enhancement Kernel Dictionary Learning for Radar Target Recognition\",\"authors\":\"Zhicheng Wang, Hui Xu, Si Chen, Zhijun Zhang, M. Shi, Yesheng Gao\",\"doi\":\"10.1109/CISS57580.2022.9971193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar target recognition technology is widely used in modern society. With the improvement of radar range resolution, radar echo target and jamming background echo can be distinguished by radar high-resolution information. This paper presents a feature enhancement kernel dictionary learning (FEK-DL) method for automatic radar target recognition (ATR). In order to enhance features of images for data enhancement and noise suppression, a matrix approximation method is used for multi-structure feature extraction. Instead of using traditional linear dictionary learning method, non-linear kernel function is used to map the targets into a high-dimensional space, in order to obtain a better classification performance. The training method and optimization steps of FEK-DL are presented in this paper. We carried out the experiment based on radar dataset to demonstrate the effectiveness of the proposed classification algorithm. The experimental results show that the classification algorithm has better classification performance than some representative dictionary learning algorithms.\",\"PeriodicalId\":331510,\"journal\":{\"name\":\"2022 3rd China International SAR Symposium (CISS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd China International SAR Symposium (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS57580.2022.9971193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS57580.2022.9971193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雷达目标识别技术在现代社会得到了广泛的应用。随着雷达距离分辨率的提高,可以利用雷达高分辨率信息区分雷达回波目标和干扰背景回波。提出了一种用于雷达目标自动识别的特征增强核字典学习(FEK-DL)方法。为了增强图像的特征进行数据增强和噪声抑制,采用矩阵逼近法提取多结构特征。采用非线性核函数代替传统的线性字典学习方法,将目标映射到高维空间,从而获得更好的分类性能。本文给出了FEK-DL的训练方法和优化步骤。我们在雷达数据集上进行了实验,验证了所提出的分类算法的有效性。实验结果表明,该分类算法比一些具有代表性的字典学习算法具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Enhancement Kernel Dictionary Learning for Radar Target Recognition
Radar target recognition technology is widely used in modern society. With the improvement of radar range resolution, radar echo target and jamming background echo can be distinguished by radar high-resolution information. This paper presents a feature enhancement kernel dictionary learning (FEK-DL) method for automatic radar target recognition (ATR). In order to enhance features of images for data enhancement and noise suppression, a matrix approximation method is used for multi-structure feature extraction. Instead of using traditional linear dictionary learning method, non-linear kernel function is used to map the targets into a high-dimensional space, in order to obtain a better classification performance. The training method and optimization steps of FEK-DL are presented in this paper. We carried out the experiment based on radar dataset to demonstrate the effectiveness of the proposed classification algorithm. The experimental results show that the classification algorithm has better classification performance than some representative dictionary learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信