使用视觉变压器识别交通标志

Haolan Wang
{"title":"使用视觉变压器识别交通标志","authors":"Haolan Wang","doi":"10.1145/3546157.3546166","DOIUrl":null,"url":null,"abstract":"Traffic sign recognition is an integral part of future autonomous driving systems. Deep learning has been applied in this task, while the performance of the recent vision Transformers is unexplored. In this study, eight different vision Transformers are validated in three real-world traffic sign datasets for the first time. The experimental results demonstrate that the best vision Transformer has a performance between the pre-trained DenseNet and the DenseNet trained from scratch. Besides, the best vision Transformers model has less training time compared to DenseNet.","PeriodicalId":422215,"journal":{"name":"Proceedings of the 6th International Conference on Information System and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Traffic Sign Recognition with Vision Transformers\",\"authors\":\"Haolan Wang\",\"doi\":\"10.1145/3546157.3546166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic sign recognition is an integral part of future autonomous driving systems. Deep learning has been applied in this task, while the performance of the recent vision Transformers is unexplored. In this study, eight different vision Transformers are validated in three real-world traffic sign datasets for the first time. The experimental results demonstrate that the best vision Transformer has a performance between the pre-trained DenseNet and the DenseNet trained from scratch. Besides, the best vision Transformers model has less training time compared to DenseNet.\",\"PeriodicalId\":422215,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information System and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information System and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546157.3546166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information System and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546157.3546166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

交通标志识别是未来自动驾驶系统的重要组成部分。深度学习已应用于该任务,而最近的视觉变形金刚的性能尚未得到探索。在本研究中,首次在三个真实的交通标志数据集中验证了八种不同的视觉变形器。实验结果表明,最佳视觉变压器在预训练的DenseNet和从头训练的DenseNet之间具有良好的性能。此外,与DenseNet相比,最佳视觉变形金刚模型的训练时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic Sign Recognition with Vision Transformers
Traffic sign recognition is an integral part of future autonomous driving systems. Deep learning has been applied in this task, while the performance of the recent vision Transformers is unexplored. In this study, eight different vision Transformers are validated in three real-world traffic sign datasets for the first time. The experimental results demonstrate that the best vision Transformer has a performance between the pre-trained DenseNet and the DenseNet trained from scratch. Besides, the best vision Transformers model has less training time compared to DenseNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信