使用视觉词袋表示的特征选择

A. Faheema, S. Rakshit
{"title":"使用视觉词袋表示的特征选择","authors":"A. Faheema, S. Rakshit","doi":"10.1109/IADCC.2010.5423019","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an efficient method to substantially increase the recognition performance of object recognition by employing feature selection method using bag-of-visual-word representation. The proposed method generates visual vocabulary from a large set of images using visual vocabulary tree. Images are represented by a vector of weighted word frequencies. We have introduced on-line feature selection method, which for a given query image selects the relevant features from a large weighted word vector. The learned database image vectors are also reduced using the selected features. This will improve the classification accuracy and also reduce the overall computational complexity by dimensionality reduction of the classification problem. In addition, it will help us in discarding the irrelevant features, which if selected will deteriorate the classification results. We have demonstrated the efficiency our method on the Caltech dataset.","PeriodicalId":249763,"journal":{"name":"2010 IEEE 2nd International Advance Computing Conference (IACC)","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Feature selection using bag-of-visual-words representation\",\"authors\":\"A. Faheema, S. Rakshit\",\"doi\":\"10.1109/IADCC.2010.5423019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an efficient method to substantially increase the recognition performance of object recognition by employing feature selection method using bag-of-visual-word representation. The proposed method generates visual vocabulary from a large set of images using visual vocabulary tree. Images are represented by a vector of weighted word frequencies. We have introduced on-line feature selection method, which for a given query image selects the relevant features from a large weighted word vector. The learned database image vectors are also reduced using the selected features. This will improve the classification accuracy and also reduce the overall computational complexity by dimensionality reduction of the classification problem. In addition, it will help us in discarding the irrelevant features, which if selected will deteriorate the classification results. We have demonstrated the efficiency our method on the Caltech dataset.\",\"PeriodicalId\":249763,\"journal\":{\"name\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"volume\":\"418 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2010.5423019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 2nd International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2010.5423019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文介绍了一种利用视觉词袋表示的特征选择方法,有效地提高了目标识别的识别性能。该方法利用视觉词汇树从大量图像中生成视觉词汇。图像由加权词频率向量表示。我们引入了在线特征选择方法,对给定的查询图像从一个大的加权词向量中选择相关特征。使用选择的特征对学习到的数据库图像向量进行约简。这将提高分类精度,并通过降低分类问题的维数来降低总体的计算复杂度。此外,它将帮助我们丢弃不相关的特征,如果选择不相关的特征会使分类结果变差。我们已经在加州理工学院的数据集上展示了我们的方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection using bag-of-visual-words representation
In this paper, we introduce an efficient method to substantially increase the recognition performance of object recognition by employing feature selection method using bag-of-visual-word representation. The proposed method generates visual vocabulary from a large set of images using visual vocabulary tree. Images are represented by a vector of weighted word frequencies. We have introduced on-line feature selection method, which for a given query image selects the relevant features from a large weighted word vector. The learned database image vectors are also reduced using the selected features. This will improve the classification accuracy and also reduce the overall computational complexity by dimensionality reduction of the classification problem. In addition, it will help us in discarding the irrelevant features, which if selected will deteriorate the classification results. We have demonstrated the efficiency our method on the Caltech dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信