基于顶部风扇- in的实深度-3电路重构2

Gaurav Sinha
{"title":"基于顶部风扇- in的实深度-3电路重构2","authors":"Gaurav Sinha","doi":"10.4230/LIPIcs.CCC.2016.31","DOIUrl":null,"url":null,"abstract":"We present a polynomial time randomized algorithm for reconstructing $\\Sigma\\Pi\\Sigma(2)$ circuits over $\\mathbb{R}$, i.e. depth 3 circuits with fan in 2 at the top addition gate and having real coefficients. The algorithm needs only a blackbox query access to the polynomial $f\\in \\mathbb{R}[x_1,\\ldots,x_n]$ of degree d in n variables, computable by a $\\Sigma\\Pi\\Sigma(2)$ circuit C. In addition, we assume that the simple rank of this polynomial (essential number of variables after removing the gcd of the two multiplication gates) is bigger than a fixed constant. Our algorithm runs in time $poly(n,d)$ and returns an equivalent $\\Sigma\\Pi\\Sigma(2)$ circuit(with high probability). Our main techniques are based on the use of Quantitative Syslvester Gallai Theorems from the work of Barak et.al.([3]) to find a small collection of nice subspaces to project onto. The heart of our paper lies in subtle applications of the Quantitative Sylvester Gallai theorems to prove why projections w.r.t. the nice subspaces can be glued. We also use Brills Equations([8]) to construct a small set of candidate linear forms (containing linear forms from both gates). Another important technique which comes very handy is the polynomial time randomized algorithm for factoring multivariate polynomials given by Kaltofen [14].","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Reconstruction of Real Depth-3 Circuits with Top Fan-In 2\",\"authors\":\"Gaurav Sinha\",\"doi\":\"10.4230/LIPIcs.CCC.2016.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a polynomial time randomized algorithm for reconstructing $\\\\Sigma\\\\Pi\\\\Sigma(2)$ circuits over $\\\\mathbb{R}$, i.e. depth 3 circuits with fan in 2 at the top addition gate and having real coefficients. The algorithm needs only a blackbox query access to the polynomial $f\\\\in \\\\mathbb{R}[x_1,\\\\ldots,x_n]$ of degree d in n variables, computable by a $\\\\Sigma\\\\Pi\\\\Sigma(2)$ circuit C. In addition, we assume that the simple rank of this polynomial (essential number of variables after removing the gcd of the two multiplication gates) is bigger than a fixed constant. Our algorithm runs in time $poly(n,d)$ and returns an equivalent $\\\\Sigma\\\\Pi\\\\Sigma(2)$ circuit(with high probability). Our main techniques are based on the use of Quantitative Syslvester Gallai Theorems from the work of Barak et.al.([3]) to find a small collection of nice subspaces to project onto. The heart of our paper lies in subtle applications of the Quantitative Sylvester Gallai theorems to prove why projections w.r.t. the nice subspaces can be glued. We also use Brills Equations([8]) to construct a small set of candidate linear forms (containing linear forms from both gates). Another important technique which comes very handy is the polynomial time randomized algorithm for factoring multivariate polynomials given by Kaltofen [14].\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2016.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2016.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出了一种多项式时间随机化算法,用于重建$\mathbb{R}$上的$\Sigma\Pi\Sigma(2)$电路,即深度3的电路,顶部加法门上的风扇为2,并且具有实系数。该算法只需要一个黑盒查询访问n个变量中d次的多项式$f\in \mathbb{R}[x_1,\ldots,x_n]$,该多项式可由$\Sigma\Pi\Sigma(2)$电路c计算。此外,我们假设该多项式的简单秩(去掉两个乘法门的gcd后的必要变量数)大于一个固定常数。我们的算法及时运行$poly(n,d)$并返回一个等效的$\Sigma\Pi\Sigma(2)$电路(高概率)。我们的主要技术是基于使用定量的Syslvester Gallai定理,该定理来自Barak等人的工作(b[3]),以找到一小部分好的子空间来进行投影。我们论文的核心在于量化Sylvester Gallai定理的微妙应用,以证明为什么投影与漂亮的子空间可以粘在一起。我们还使用Brills方程([8])来构建一个候选线性形式的小集合(包含来自两个门的线性形式)。另一个非常方便的重要技术是Kaltofen[14]给出的多元多项式分解的多项式时间随机化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of Real Depth-3 Circuits with Top Fan-In 2
We present a polynomial time randomized algorithm for reconstructing $\Sigma\Pi\Sigma(2)$ circuits over $\mathbb{R}$, i.e. depth 3 circuits with fan in 2 at the top addition gate and having real coefficients. The algorithm needs only a blackbox query access to the polynomial $f\in \mathbb{R}[x_1,\ldots,x_n]$ of degree d in n variables, computable by a $\Sigma\Pi\Sigma(2)$ circuit C. In addition, we assume that the simple rank of this polynomial (essential number of variables after removing the gcd of the two multiplication gates) is bigger than a fixed constant. Our algorithm runs in time $poly(n,d)$ and returns an equivalent $\Sigma\Pi\Sigma(2)$ circuit(with high probability). Our main techniques are based on the use of Quantitative Syslvester Gallai Theorems from the work of Barak et.al.([3]) to find a small collection of nice subspaces to project onto. The heart of our paper lies in subtle applications of the Quantitative Sylvester Gallai theorems to prove why projections w.r.t. the nice subspaces can be glued. We also use Brills Equations([8]) to construct a small set of candidate linear forms (containing linear forms from both gates). Another important technique which comes very handy is the polynomial time randomized algorithm for factoring multivariate polynomials given by Kaltofen [14].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信