用动态条件关联和蒙特卡罗模拟降低巴塞尔协议III的资本要求

Manuel Kleinknecht, W. Ng
{"title":"用动态条件关联和蒙特卡罗模拟降低巴塞尔协议III的资本要求","authors":"Manuel Kleinknecht, W. Ng","doi":"10.2139/ssrn.2717051","DOIUrl":null,"url":null,"abstract":"Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are popular risk measure in portfolio optimisation and market regulations. However, so far little research has been done on how these risk measures reduce the Basel III market risk capital requirements. This paper analyses the efficiency of empirical, parametric and simulation based VaR and CVaR optimised portfolios on the regulatory capital requirements. Furthermore, we show how the Population-Based Incremental Learning algorithm can be used to solve the constraint optimisation problems. We find that the parametric and empirical distribution assumption generate similar results and neither of them clearly outperforms the other. Our results indicate that portfolios optimised with a multivariate Dynamic Conditional Correlation simulation approach reduce the capital requirements by about 11%.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Basel III Capital Requirements with Dynamic Conditional Correlation and Monte Carlo Simulation\",\"authors\":\"Manuel Kleinknecht, W. Ng\",\"doi\":\"10.2139/ssrn.2717051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are popular risk measure in portfolio optimisation and market regulations. However, so far little research has been done on how these risk measures reduce the Basel III market risk capital requirements. This paper analyses the efficiency of empirical, parametric and simulation based VaR and CVaR optimised portfolios on the regulatory capital requirements. Furthermore, we show how the Population-Based Incremental Learning algorithm can be used to solve the constraint optimisation problems. We find that the parametric and empirical distribution assumption generate similar results and neither of them clearly outperforms the other. Our results indicate that portfolios optimised with a multivariate Dynamic Conditional Correlation simulation approach reduce the capital requirements by about 11%.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2717051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2717051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风险价值(VaR)和条件风险价值(CVaR)是投资组合优化和市场监管中常用的风险度量。然而,到目前为止,关于这些风险措施如何降低巴塞尔协议III市场风险资本要求的研究还很少。本文分析了基于经验、参数和模拟的VaR和CVaR优化组合在监管资本要求下的效率。此外,我们展示了如何使用基于群体的增量学习算法来解决约束优化问题。我们发现参数分布假设和经验分布假设产生相似的结果,两者都没有明显优于对方。我们的研究结果表明,使用多元动态条件相关模拟方法优化的投资组合可将资本需求降低约11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Basel III Capital Requirements with Dynamic Conditional Correlation and Monte Carlo Simulation
Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are popular risk measure in portfolio optimisation and market regulations. However, so far little research has been done on how these risk measures reduce the Basel III market risk capital requirements. This paper analyses the efficiency of empirical, parametric and simulation based VaR and CVaR optimised portfolios on the regulatory capital requirements. Furthermore, we show how the Population-Based Incremental Learning algorithm can be used to solve the constraint optimisation problems. We find that the parametric and empirical distribution assumption generate similar results and neither of them clearly outperforms the other. Our results indicate that portfolios optimised with a multivariate Dynamic Conditional Correlation simulation approach reduce the capital requirements by about 11%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信