一种周期框架学习方法用于m型超声心动图的准确地标定位

Yinbing Tian, Shibiao Xu, Li Guo, Fu'ze Cong
{"title":"一种周期框架学习方法用于m型超声心动图的准确地标定位","authors":"Yinbing Tian, Shibiao Xu, Li Guo, Fu'ze Cong","doi":"10.1109/ICASSP39728.2021.9414375","DOIUrl":null,"url":null,"abstract":"Anatomical landmark localization has been a key challenge for medical image analysis. Existing researches mostly adopt CNN as the main architecture for landmark localization while they are not applicable to process image modalities with periodic structure. In this paper, we propose a novel two-stage frame-level detection and heatmap regression model for accurate landmark localization in m-mode echocardiography, which promotes better integration between global context information and local appearance. Specifically, a periodic frame detection module with LSTM is designed to model periodic context and detect frames of systole and diastole from original echocardiography. Next, a CNN based heatmap regression model is introduced to predict landmark localization in each systolic or diastolic local region. Experiment results show that the proposed model achieves average distance error of 9.31, which is at a reduction by 24% comparing to baseline models.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Periodic Frame Learning Approach for Accurate Landmark Localization in M-Mode Echocardiography\",\"authors\":\"Yinbing Tian, Shibiao Xu, Li Guo, Fu'ze Cong\",\"doi\":\"10.1109/ICASSP39728.2021.9414375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anatomical landmark localization has been a key challenge for medical image analysis. Existing researches mostly adopt CNN as the main architecture for landmark localization while they are not applicable to process image modalities with periodic structure. In this paper, we propose a novel two-stage frame-level detection and heatmap regression model for accurate landmark localization in m-mode echocardiography, which promotes better integration between global context information and local appearance. Specifically, a periodic frame detection module with LSTM is designed to model periodic context and detect frames of systole and diastole from original echocardiography. Next, a CNN based heatmap regression model is introduced to predict landmark localization in each systolic or diastolic local region. Experiment results show that the proposed model achieves average distance error of 9.31, which is at a reduction by 24% comparing to baseline models.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

解剖地标定位一直是医学图像分析的关键挑战。现有研究多采用CNN作为地标定位的主要架构,不适用于处理具有周期结构的图像模态。在本文中,我们提出了一种新的两阶段帧级检测和热图回归模型,用于m模超声心动图的准确地标定位,该模型促进了全局上下文信息和局部外观之间的更好整合。具体来说,利用LSTM设计了一个周期帧检测模块来模拟周期上下文,并从原始超声心动图中检测收缩期和舒张期帧。接下来,引入基于CNN的热图回归模型来预测每个收缩期或舒张期局部区域的地标定位。实验结果表明,该模型的平均距离误差为9.31,与基线模型相比降低了24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Periodic Frame Learning Approach for Accurate Landmark Localization in M-Mode Echocardiography
Anatomical landmark localization has been a key challenge for medical image analysis. Existing researches mostly adopt CNN as the main architecture for landmark localization while they are not applicable to process image modalities with periodic structure. In this paper, we propose a novel two-stage frame-level detection and heatmap regression model for accurate landmark localization in m-mode echocardiography, which promotes better integration between global context information and local appearance. Specifically, a periodic frame detection module with LSTM is designed to model periodic context and detect frames of systole and diastole from original echocardiography. Next, a CNN based heatmap regression model is introduced to predict landmark localization in each systolic or diastolic local region. Experiment results show that the proposed model achieves average distance error of 9.31, which is at a reduction by 24% comparing to baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信