通过自主神经系统关联识别ar引导的手动任务:初步研究

M. Nardelli, S. Condino, S. Ghiasi, A. L. Callara, Gianluca Rho, M. Carbone, V. Ferrari, E. Scilingo, A. Greco
{"title":"通过自主神经系统关联识别ar引导的手动任务:初步研究","authors":"M. Nardelli, S. Condino, S. Ghiasi, A. L. Callara, Gianluca Rho, M. Carbone, V. Ferrari, E. Scilingo, A. Greco","doi":"10.1109/MeMeA49120.2020.9137309","DOIUrl":null,"url":null,"abstract":"Optical see-through head-mounted displays (HMD) enable optical superposition of computer-generated virtual data onto the user’s natural view of the real environment. This makes them the most suitable candidate to guide manual tasks, as for augmented reality (AR) guided surgery. However, most commercial systems have a single focal plane at around 2-3 m inducing \"vergence-accommodation conflict\" and \"focal rivalry\" when used to guide manual tasks. These phenomena can often cause visual fatigue and low performance. In this preliminary study, ten subjects performed a precision manual task in two conditions: with or without using the AR HMD. We demonstrated a significant deterioration of the performance using the AR-guided manual task. Moreover, we investigated the autonomic nervous system response through the analysis of the heart rate variability (HRV) and electrodermal activity (EDA) signals. We developed a pattern recognition system that was able to automatically recognize the two experimental conditions using only EDA and HRV data with an accuracy of 75%. Our learning algorithm highlighted two different physiological patterns combining parasympathetic and sympathetic information.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognizing AR-guided manual tasks through autonomic nervous system correlates: a preliminary study\",\"authors\":\"M. Nardelli, S. Condino, S. Ghiasi, A. L. Callara, Gianluca Rho, M. Carbone, V. Ferrari, E. Scilingo, A. Greco\",\"doi\":\"10.1109/MeMeA49120.2020.9137309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical see-through head-mounted displays (HMD) enable optical superposition of computer-generated virtual data onto the user’s natural view of the real environment. This makes them the most suitable candidate to guide manual tasks, as for augmented reality (AR) guided surgery. However, most commercial systems have a single focal plane at around 2-3 m inducing \\\"vergence-accommodation conflict\\\" and \\\"focal rivalry\\\" when used to guide manual tasks. These phenomena can often cause visual fatigue and low performance. In this preliminary study, ten subjects performed a precision manual task in two conditions: with or without using the AR HMD. We demonstrated a significant deterioration of the performance using the AR-guided manual task. Moreover, we investigated the autonomic nervous system response through the analysis of the heart rate variability (HRV) and electrodermal activity (EDA) signals. We developed a pattern recognition system that was able to automatically recognize the two experimental conditions using only EDA and HRV data with an accuracy of 75%. Our learning algorithm highlighted two different physiological patterns combining parasympathetic and sympathetic information.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光学透明头戴式显示器(HMD)可以将计算机生成的虚拟数据光学叠加到用户对真实环境的自然视图上。这使它们成为指导手工任务的最合适人选,例如增强现实(AR)指导的手术。然而,大多数商业系统在2-3米左右有一个单一焦平面,当用于指导手动任务时,会导致“收敛适应冲突”和“焦点竞争”。这些现象往往会导致视觉疲劳和低下的表现。在这项初步研究中,10名受试者在两种情况下执行精确的手动任务:使用或不使用AR头显。我们使用ar引导的手动任务演示了性能的显著下降。此外,我们通过分析心率变异性(HRV)和皮电活动(EDA)信号来研究自主神经系统的反应。我们开发了一种模式识别系统,该系统仅使用EDA和HRV数据就能自动识别两种实验条件,准确率为75%。我们的学习算法强调了结合副交感神经和交感神经信息的两种不同的生理模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing AR-guided manual tasks through autonomic nervous system correlates: a preliminary study
Optical see-through head-mounted displays (HMD) enable optical superposition of computer-generated virtual data onto the user’s natural view of the real environment. This makes them the most suitable candidate to guide manual tasks, as for augmented reality (AR) guided surgery. However, most commercial systems have a single focal plane at around 2-3 m inducing "vergence-accommodation conflict" and "focal rivalry" when used to guide manual tasks. These phenomena can often cause visual fatigue and low performance. In this preliminary study, ten subjects performed a precision manual task in two conditions: with or without using the AR HMD. We demonstrated a significant deterioration of the performance using the AR-guided manual task. Moreover, we investigated the autonomic nervous system response through the analysis of the heart rate variability (HRV) and electrodermal activity (EDA) signals. We developed a pattern recognition system that was able to automatically recognize the two experimental conditions using only EDA and HRV data with an accuracy of 75%. Our learning algorithm highlighted two different physiological patterns combining parasympathetic and sympathetic information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信