模糊系统的帧逼近- siso情况

A. Shmilovici, O. Maimon
{"title":"模糊系统的帧逼近- siso情况","authors":"A. Shmilovici, O. Maimon","doi":"10.1109/FUZZY.1995.409961","DOIUrl":null,"url":null,"abstract":"In this paper, the approximation problem of SISO fuzzy systems by frames is discussed. Based on the fact that fuzzy systems can be represented by a linear combination of fuzzy basis functions (FBF), we first discuss the mathematical theory of frames in a Hilbert space, and then the conditions under which a FBF is a valid frame. Fuzzy membership functions which constitute a valid frame can universally approximate any continuous function. The triangular membership function is demonstrated as such, and it's approximation properties are discussed.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy systems approximation by frames-SISO case\",\"authors\":\"A. Shmilovici, O. Maimon\",\"doi\":\"10.1109/FUZZY.1995.409961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the approximation problem of SISO fuzzy systems by frames is discussed. Based on the fact that fuzzy systems can be represented by a linear combination of fuzzy basis functions (FBF), we first discuss the mathematical theory of frames in a Hilbert space, and then the conditions under which a FBF is a valid frame. Fuzzy membership functions which constitute a valid frame can universally approximate any continuous function. The triangular membership function is demonstrated as such, and it's approximation properties are discussed.<<ETX>>\",\"PeriodicalId\":150477,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"volume\":\"320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1995.409961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了SISO模糊系统的帧逼近问题。基于模糊系统可以用模糊基函数的线性组合来表示的事实,我们首先讨论了Hilbert空间中框架的数学理论,然后讨论了模糊基函数是有效框架的条件。构成有效框架的模糊隶属函数可以普遍逼近任何连续函数。证明了三角隶属函数,并讨论了它的近似性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy systems approximation by frames-SISO case
In this paper, the approximation problem of SISO fuzzy systems by frames is discussed. Based on the fact that fuzzy systems can be represented by a linear combination of fuzzy basis functions (FBF), we first discuss the mathematical theory of frames in a Hilbert space, and then the conditions under which a FBF is a valid frame. Fuzzy membership functions which constitute a valid frame can universally approximate any continuous function. The triangular membership function is demonstrated as such, and it's approximation properties are discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信