S. Ishii, A. Sato, M. Aoki, K. Akahane, S. Nagano, K. Nakagawa, Kaori Sato, H. Okamoto
{"title":"未来天基多普勒风激光雷达用Tm,Ho: YLF激光器的研制","authors":"S. Ishii, A. Sato, M. Aoki, K. Akahane, S. Nagano, K. Nakagawa, Kaori Sato, H. Okamoto","doi":"10.1117/12.2324388","DOIUrl":null,"url":null,"abstract":"Most of space-based observing systems make water-vapor- and temperature-related measurements, while spacebased observing systems for wind measurement is limited. The current passive space-based observing systems for wind measurement has a large coverage area and high temporal and horizontal resolutions but has a low vertical resolution. The World Meteorological Organization (WMO) wants to develop space-based wind profiling systems. A Doppler Wind Lidar (DWL) is a useful and power technology for wind measurement and it can be designed as compact mobile, airborne, and space-based systems. DWL would provide us with a wind profile having high vertical resolution, low bias, and good precision, and it is necessary to fill the gap of current observations. The National Institute of Information and Communications Technology (NICT) is developing a single-frequency high-energy Tm,Ho:YLF laser, 2-μm key technology and instrument for a future space-based coherent DWL. We demonstrated the Tm,Ho:YLF laser producing a pulse energy of 125 mJ operating at 30 Hz meeting requirements for the future spacebased coherent DWL. In the paper, we will describe recent progress at NICT.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Tm,Ho: YLF laser for future space-based doppler wind lidar\",\"authors\":\"S. Ishii, A. Sato, M. Aoki, K. Akahane, S. Nagano, K. Nakagawa, Kaori Sato, H. Okamoto\",\"doi\":\"10.1117/12.2324388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of space-based observing systems make water-vapor- and temperature-related measurements, while spacebased observing systems for wind measurement is limited. The current passive space-based observing systems for wind measurement has a large coverage area and high temporal and horizontal resolutions but has a low vertical resolution. The World Meteorological Organization (WMO) wants to develop space-based wind profiling systems. A Doppler Wind Lidar (DWL) is a useful and power technology for wind measurement and it can be designed as compact mobile, airborne, and space-based systems. DWL would provide us with a wind profile having high vertical resolution, low bias, and good precision, and it is necessary to fill the gap of current observations. The National Institute of Information and Communications Technology (NICT) is developing a single-frequency high-energy Tm,Ho:YLF laser, 2-μm key technology and instrument for a future space-based coherent DWL. We demonstrated the Tm,Ho:YLF laser producing a pulse energy of 125 mJ operating at 30 Hz meeting requirements for the future spacebased coherent DWL. In the paper, we will describe recent progress at NICT.\",\"PeriodicalId\":370971,\"journal\":{\"name\":\"Asia-Pacific Remote Sensing\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2324388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2324388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Tm,Ho: YLF laser for future space-based doppler wind lidar
Most of space-based observing systems make water-vapor- and temperature-related measurements, while spacebased observing systems for wind measurement is limited. The current passive space-based observing systems for wind measurement has a large coverage area and high temporal and horizontal resolutions but has a low vertical resolution. The World Meteorological Organization (WMO) wants to develop space-based wind profiling systems. A Doppler Wind Lidar (DWL) is a useful and power technology for wind measurement and it can be designed as compact mobile, airborne, and space-based systems. DWL would provide us with a wind profile having high vertical resolution, low bias, and good precision, and it is necessary to fill the gap of current observations. The National Institute of Information and Communications Technology (NICT) is developing a single-frequency high-energy Tm,Ho:YLF laser, 2-μm key technology and instrument for a future space-based coherent DWL. We demonstrated the Tm,Ho:YLF laser producing a pulse energy of 125 mJ operating at 30 Hz meeting requirements for the future spacebased coherent DWL. In the paper, we will describe recent progress at NICT.