自动化表单测试的机器学习和约束求解

D. Santiago, Justin Phillips, Patrick Alt, Brian R. Muras, Tariq M. King, Peter J. Clarke
{"title":"自动化表单测试的机器学习和约束求解","authors":"D. Santiago, Justin Phillips, Patrick Alt, Brian R. Muras, Tariq M. King, Peter J. Clarke","doi":"10.1109/ISSRE.2019.00030","DOIUrl":null,"url":null,"abstract":"In recent years there has been a focus on the automatic generation of test cases using white box testing techniques, however the same cannot be said for the generation of test cases at the system-level from natural language system requirements. Some of the white-box techniques include: the use of constraint solvers for the automatic generation of test inputs at the white box level; the use of control flow graphs generated from code; and the use of path generation and symbolic execution to generate test inputs and test for path feasibility. Techniques such as boundary value analysis (BVA) may also be used for generating stronger test suites. However, for black box testing we rely on specifications or implicit requirements and spend considerable time and effort designing and executing test cases. This paper presents an approach that leverages natural language processing and machine learning techniques to capture black box system behavior in the form of constraints. Constraint solvers are then used to generate test cases using BVA and equivalence class partitioning. We also conduct a proof of concept that applies this approach to a simplified task management application and an enterprise job recruiting application.","PeriodicalId":254749,"journal":{"name":"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine Learning and Constraint Solving for Automated Form Testing\",\"authors\":\"D. Santiago, Justin Phillips, Patrick Alt, Brian R. Muras, Tariq M. King, Peter J. Clarke\",\"doi\":\"10.1109/ISSRE.2019.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years there has been a focus on the automatic generation of test cases using white box testing techniques, however the same cannot be said for the generation of test cases at the system-level from natural language system requirements. Some of the white-box techniques include: the use of constraint solvers for the automatic generation of test inputs at the white box level; the use of control flow graphs generated from code; and the use of path generation and symbolic execution to generate test inputs and test for path feasibility. Techniques such as boundary value analysis (BVA) may also be used for generating stronger test suites. However, for black box testing we rely on specifications or implicit requirements and spend considerable time and effort designing and executing test cases. This paper presents an approach that leverages natural language processing and machine learning techniques to capture black box system behavior in the form of constraints. Constraint solvers are then used to generate test cases using BVA and equivalence class partitioning. We also conduct a proof of concept that applies this approach to a simplified task management application and an enterprise job recruiting application.\",\"PeriodicalId\":254749,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2019.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,人们开始关注使用白盒测试技术自动生成测试用例,然而,从自然语言系统需求生成系统级的测试用例却并非如此。一些白盒技术包括:在白盒级别使用约束求解器自动生成测试输入;使用控制流程图生成代码;并使用路径生成和符号执行来生成测试输入并测试路径的可行性。边界值分析(BVA)等技术也可以用于生成更强的测试套件。然而,对于黑盒测试,我们依赖于规格说明或隐式需求,并花费大量的时间和精力来设计和执行测试用例。本文提出了一种利用自然语言处理和机器学习技术以约束形式捕获黑箱系统行为的方法。然后使用约束求解器使用BVA和等价类划分来生成测试用例。我们还进行了概念验证,将此方法应用于简化的任务管理应用程序和企业职位招聘应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Constraint Solving for Automated Form Testing
In recent years there has been a focus on the automatic generation of test cases using white box testing techniques, however the same cannot be said for the generation of test cases at the system-level from natural language system requirements. Some of the white-box techniques include: the use of constraint solvers for the automatic generation of test inputs at the white box level; the use of control flow graphs generated from code; and the use of path generation and symbolic execution to generate test inputs and test for path feasibility. Techniques such as boundary value analysis (BVA) may also be used for generating stronger test suites. However, for black box testing we rely on specifications or implicit requirements and spend considerable time and effort designing and executing test cases. This paper presents an approach that leverages natural language processing and machine learning techniques to capture black box system behavior in the form of constraints. Constraint solvers are then used to generate test cases using BVA and equivalence class partitioning. We also conduct a proof of concept that applies this approach to a simplified task management application and an enterprise job recruiting application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信