ASISTO:发电厂运行和培训的集成智能辅助系统

A. Reyes, P. H. Ibarguengoytia, F. Elizalde, Liliana Sanchez, Alondra Nava
{"title":"ASISTO:发电厂运行和培训的集成智能辅助系统","authors":"A. Reyes, P. H. Ibarguengoytia, F. Elizalde, Liliana Sanchez, Alondra Nava","doi":"10.1109/ISAP.2011.6082189","DOIUrl":null,"url":null,"abstract":"In this paper we present ASISTO, an intelligent assistant system for power plant operation and training based on probabilistic graphical models. Its main advantage is that it provides on-line guidance in the form of ordered recommendations, sensor validation capabilities, and explanation features, all for uncertain environments. The system allows dealing with abnormal situations, non-expected events, or the occurrence of process transients. The different modules of the system are based on Markov decision processes, Bayesian networks, and knowledge representation using the object-oriented paradigm. Functional results for each component of ASISTO using a power plant simulator are also presented.","PeriodicalId":424662,"journal":{"name":"2011 16th International Conference on Intelligent System Applications to Power Systems","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ASISTO: An integrated intelligent assistant system for power plant operation and training\",\"authors\":\"A. Reyes, P. H. Ibarguengoytia, F. Elizalde, Liliana Sanchez, Alondra Nava\",\"doi\":\"10.1109/ISAP.2011.6082189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present ASISTO, an intelligent assistant system for power plant operation and training based on probabilistic graphical models. Its main advantage is that it provides on-line guidance in the form of ordered recommendations, sensor validation capabilities, and explanation features, all for uncertain environments. The system allows dealing with abnormal situations, non-expected events, or the occurrence of process transients. The different modules of the system are based on Markov decision processes, Bayesian networks, and knowledge representation using the object-oriented paradigm. Functional results for each component of ASISTO using a power plant simulator are also presented.\",\"PeriodicalId\":424662,\"journal\":{\"name\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2011.6082189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Intelligent System Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2011.6082189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于概率图模型的电厂运行与训练智能辅助系统ASISTO。它的主要优点是它以有序推荐、传感器验证功能和解释功能的形式提供在线指导,所有这些都适用于不确定的环境。系统允许处理异常情况、非预期事件或流程瞬变的发生。系统的不同模块基于马尔可夫决策过程、贝叶斯网络和使用面向对象范式的知识表示。并给出了ASISTO各部件在电厂模拟器上的功能测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASISTO: An integrated intelligent assistant system for power plant operation and training
In this paper we present ASISTO, an intelligent assistant system for power plant operation and training based on probabilistic graphical models. Its main advantage is that it provides on-line guidance in the form of ordered recommendations, sensor validation capabilities, and explanation features, all for uncertain environments. The system allows dealing with abnormal situations, non-expected events, or the occurrence of process transients. The different modules of the system are based on Markov decision processes, Bayesian networks, and knowledge representation using the object-oriented paradigm. Functional results for each component of ASISTO using a power plant simulator are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信