Yu Guo, Wei Yang, Jie Chen, Chunsheng Li, Xiaokun Sun
{"title":"面向方位多通道星载SAR数据处理的相位保持成像算法","authors":"Yu Guo, Wei Yang, Jie Chen, Chunsheng Li, Xiaokun Sun","doi":"10.1109/APSAR46974.2019.9048268","DOIUrl":null,"url":null,"abstract":"Azimuth multi-channels is widely used for high-resolution and wide-swath recently, especially for the purpose of interferometry processing. However, due to the reconstruction of non-uniformly azimuth signal, the classical phase-preserving algorithm does not work well. In this paper, a phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing is proposed. Firstly, combined with the reconstruction operation, the effect on phase-preserving accuracy is analyzed in detail, with the discussion of the equivalent phase center position. Then, the novel phase-preserving algorithm is addressed, which can accurately compensate the phase errors, including the constant phase term, the linear phase term introduced by the shifting zero-Doppler frequency, the residual cubic phase error along range direction, and the nonuniform sampling phase error after range-compression. Finally, simulation results verify the effectiveness of the proposed algorithm.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing\",\"authors\":\"Yu Guo, Wei Yang, Jie Chen, Chunsheng Li, Xiaokun Sun\",\"doi\":\"10.1109/APSAR46974.2019.9048268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Azimuth multi-channels is widely used for high-resolution and wide-swath recently, especially for the purpose of interferometry processing. However, due to the reconstruction of non-uniformly azimuth signal, the classical phase-preserving algorithm does not work well. In this paper, a phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing is proposed. Firstly, combined with the reconstruction operation, the effect on phase-preserving accuracy is analyzed in detail, with the discussion of the equivalent phase center position. Then, the novel phase-preserving algorithm is addressed, which can accurately compensate the phase errors, including the constant phase term, the linear phase term introduced by the shifting zero-Doppler frequency, the residual cubic phase error along range direction, and the nonuniform sampling phase error after range-compression. Finally, simulation results verify the effectiveness of the proposed algorithm.\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing
Azimuth multi-channels is widely used for high-resolution and wide-swath recently, especially for the purpose of interferometry processing. However, due to the reconstruction of non-uniformly azimuth signal, the classical phase-preserving algorithm does not work well. In this paper, a phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing is proposed. Firstly, combined with the reconstruction operation, the effect on phase-preserving accuracy is analyzed in detail, with the discussion of the equivalent phase center position. Then, the novel phase-preserving algorithm is addressed, which can accurately compensate the phase errors, including the constant phase term, the linear phase term introduced by the shifting zero-Doppler frequency, the residual cubic phase error along range direction, and the nonuniform sampling phase error after range-compression. Finally, simulation results verify the effectiveness of the proposed algorithm.