不规则工作负载的事件触发可编程预取器

S. Ainsworth, Timothy M. Jones
{"title":"不规则工作负载的事件触发可编程预取器","authors":"S. Ainsworth, Timothy M. Jones","doi":"10.1145/3173162.3173189","DOIUrl":null,"url":null,"abstract":"Many modern workloads compute on large amounts of data, often with irregular memory accesses. Current architectures perform poorly for these workloads, as existing prefetching techniques cannot capture the memory access patterns; these applications end up heavily memory-bound as a result. Although a number of techniques exist to explicitly configure a prefetcher with traversal patterns, gaining significant speedups, they do not generalise beyond their target data structures. Instead, we propose an event-triggered programmable prefetcher combining the flexibility of a general-purpose computational unit with an event-based programming model, along with compiler techniques to automatically generate events from the original source code with annotations. This allows more complex fetching decisions to be made, without needing to stall when intermediate results are required. Using our programmable prefetching system, combined with small prefetch kernels extracted from applications, we achieve an average 3.0x speedup in simulation for a variety of graph, database and HPC workloads.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"An Event-Triggered Programmable Prefetcher for Irregular Workloads\",\"authors\":\"S. Ainsworth, Timothy M. Jones\",\"doi\":\"10.1145/3173162.3173189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many modern workloads compute on large amounts of data, often with irregular memory accesses. Current architectures perform poorly for these workloads, as existing prefetching techniques cannot capture the memory access patterns; these applications end up heavily memory-bound as a result. Although a number of techniques exist to explicitly configure a prefetcher with traversal patterns, gaining significant speedups, they do not generalise beyond their target data structures. Instead, we propose an event-triggered programmable prefetcher combining the flexibility of a general-purpose computational unit with an event-based programming model, along with compiler techniques to automatically generate events from the original source code with annotations. This allows more complex fetching decisions to be made, without needing to stall when intermediate results are required. Using our programmable prefetching system, combined with small prefetch kernels extracted from applications, we achieve an average 3.0x speedup in simulation for a variety of graph, database and HPC workloads.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

许多现代工作负载在大量数据上进行计算,通常具有不规则的内存访问。当前的体系结构对于这些工作负载表现不佳,因为现有的预取技术无法捕获内存访问模式;因此,这些应用程序最终会受到严重的内存限制。尽管有许多技术可以显式地配置具有遍历模式的预取器,从而获得显著的速度提升,但它们不能泛化到目标数据结构之外。相反,我们提出了一个事件触发的可编程预取器,它结合了通用计算单元的灵活性和基于事件的编程模型,以及从带有注释的原始源代码自动生成事件的编译器技术。这允许做出更复杂的抓取决策,而不需要在需要中间结果时拖延。使用我们的可编程预取系统,结合从应用程序中提取的小型预取内核,我们在模拟各种图形,数据库和HPC工作负载时实现了平均3.0倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Event-Triggered Programmable Prefetcher for Irregular Workloads
Many modern workloads compute on large amounts of data, often with irregular memory accesses. Current architectures perform poorly for these workloads, as existing prefetching techniques cannot capture the memory access patterns; these applications end up heavily memory-bound as a result. Although a number of techniques exist to explicitly configure a prefetcher with traversal patterns, gaining significant speedups, they do not generalise beyond their target data structures. Instead, we propose an event-triggered programmable prefetcher combining the flexibility of a general-purpose computational unit with an event-based programming model, along with compiler techniques to automatically generate events from the original source code with annotations. This allows more complex fetching decisions to be made, without needing to stall when intermediate results are required. Using our programmable prefetching system, combined with small prefetch kernels extracted from applications, we achieve an average 3.0x speedup in simulation for a variety of graph, database and HPC workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信