J. Lock, Daniel Filonik, R. Lawther, N. Pather, K. Gaus, S. Kenderdine, T. Bednarz
{"title":"使用协作沉浸式环境的单细胞显微镜数据的可视化分析","authors":"J. Lock, Daniel Filonik, R. Lawther, N. Pather, K. Gaus, S. Kenderdine, T. Bednarz","doi":"10.1145/3284398.3284412","DOIUrl":null,"url":null,"abstract":"Understanding complex physiological processes demands the integration of diverse insights derived from visual and quantitative analysis of bio-image data, such as microscopy images. This process is currently constrained by disconnects between methods for interpreting data, as well as by language barriers that hamper the necessary cross-disciplinary collaborations. Using immersive analytics, we leveraged bespoke immersive visualizations to integrate bio-images and derived quantitative data, enabling deeper comprehension and seamless interaction with multi-dimensional cellular information. We designed and developed a visualization platform that combines time-lapse confocal microscopy recordings of cancer cell motility with image-derived quantitative data spanning 52 parameters. The integrated data representations enable rapid, intuitive interpretation, bridging the divide between bio-images and quantitative information. Moreover, the immersive visualization environment promotes collaborative data interrogation, supporting vital cross-disciplinary collaborations capable of deriving transformative insights from rapidly emerging bio-image big data.","PeriodicalId":340366,"journal":{"name":"Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Visual analytics of single cell microscopy data using a collaborative immersive environment\",\"authors\":\"J. Lock, Daniel Filonik, R. Lawther, N. Pather, K. Gaus, S. Kenderdine, T. Bednarz\",\"doi\":\"10.1145/3284398.3284412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding complex physiological processes demands the integration of diverse insights derived from visual and quantitative analysis of bio-image data, such as microscopy images. This process is currently constrained by disconnects between methods for interpreting data, as well as by language barriers that hamper the necessary cross-disciplinary collaborations. Using immersive analytics, we leveraged bespoke immersive visualizations to integrate bio-images and derived quantitative data, enabling deeper comprehension and seamless interaction with multi-dimensional cellular information. We designed and developed a visualization platform that combines time-lapse confocal microscopy recordings of cancer cell motility with image-derived quantitative data spanning 52 parameters. The integrated data representations enable rapid, intuitive interpretation, bridging the divide between bio-images and quantitative information. Moreover, the immersive visualization environment promotes collaborative data interrogation, supporting vital cross-disciplinary collaborations capable of deriving transformative insights from rapidly emerging bio-image big data.\",\"PeriodicalId\":340366,\"journal\":{\"name\":\"Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3284398.3284412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284398.3284412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual analytics of single cell microscopy data using a collaborative immersive environment
Understanding complex physiological processes demands the integration of diverse insights derived from visual and quantitative analysis of bio-image data, such as microscopy images. This process is currently constrained by disconnects between methods for interpreting data, as well as by language barriers that hamper the necessary cross-disciplinary collaborations. Using immersive analytics, we leveraged bespoke immersive visualizations to integrate bio-images and derived quantitative data, enabling deeper comprehension and seamless interaction with multi-dimensional cellular information. We designed and developed a visualization platform that combines time-lapse confocal microscopy recordings of cancer cell motility with image-derived quantitative data spanning 52 parameters. The integrated data representations enable rapid, intuitive interpretation, bridging the divide between bio-images and quantitative information. Moreover, the immersive visualization environment promotes collaborative data interrogation, supporting vital cross-disciplinary collaborations capable of deriving transformative insights from rapidly emerging bio-image big data.