{"title":"离散超材料球中的介观效应","authors":"M. Lapine, C. Poulton, R. McPhedran","doi":"10.1117/12.2202561","DOIUrl":null,"url":null,"abstract":"It is well known that effective medium description of metamaterials requires much caution, even for strongly subwavelength systems. Boundary effects play a dramatic role in finite samples with discrete structure, making their observable properties quite different from the predictions of effective medium theory. We report some new findings regarding the distinction between a homogenised response and actual properties of discrete structures, looking into canonical shape of metamaterial objects. Even for large size (up to 20000 “meta-atoms”), we observe a difference between large discretised spheres and a continuous one, which is important for practical design and future development of metamaterials. Finally, we also provide the results for non-resonant discrete finite systems","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic effects in discretised metamaterial spheres\",\"authors\":\"M. Lapine, C. Poulton, R. McPhedran\",\"doi\":\"10.1117/12.2202561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that effective medium description of metamaterials requires much caution, even for strongly subwavelength systems. Boundary effects play a dramatic role in finite samples with discrete structure, making their observable properties quite different from the predictions of effective medium theory. We report some new findings regarding the distinction between a homogenised response and actual properties of discrete structures, looking into canonical shape of metamaterial objects. Even for large size (up to 20000 “meta-atoms”), we observe a difference between large discretised spheres and a continuous one, which is important for practical design and future development of metamaterials. Finally, we also provide the results for non-resonant discrete finite systems\",\"PeriodicalId\":320411,\"journal\":{\"name\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2202561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2202561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesoscopic effects in discretised metamaterial spheres
It is well known that effective medium description of metamaterials requires much caution, even for strongly subwavelength systems. Boundary effects play a dramatic role in finite samples with discrete structure, making their observable properties quite different from the predictions of effective medium theory. We report some new findings regarding the distinction between a homogenised response and actual properties of discrete structures, looking into canonical shape of metamaterial objects. Even for large size (up to 20000 “meta-atoms”), we observe a difference between large discretised spheres and a continuous one, which is important for practical design and future development of metamaterials. Finally, we also provide the results for non-resonant discrete finite systems