SVM方法作为学生对电子学习的认可

Rizqi Agung Permana
{"title":"SVM方法作为学生对电子学习的认可","authors":"Rizqi Agung Permana","doi":"10.31294/JKI.V7I1.34","DOIUrl":null,"url":null,"abstract":"Electrovic learning system is a web -based communication platform that enables learners , without limitation of place and time , to access a variety of learning tools such as discussion forums , assessment , content repositories , and document sharing system. Electrovic Learning can be just as effective as face-to- face in a conventional classroom teaching and learning , if proper teaching techniques and well-organized. Based on the data processing has been done with membandingakan algorithm and Support Vector Machine Support Vector Machine by using the log data of students . Later in the test to get the accuracy and AUC values ​​of each algorithm so that the highest test results obtained by using support vector machine an accuracy of 85.02%, and AUC value of  0.710. \n ","PeriodicalId":384112,"journal":{"name":"Jurnal Khatulistiwa Informatika","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"METODE SVM SEBAGAI PENENTUAN KELULUSAN MAHASISWA PADA PEMBELAJARAN ELEKTRONIK\",\"authors\":\"Rizqi Agung Permana\",\"doi\":\"10.31294/JKI.V7I1.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrovic learning system is a web -based communication platform that enables learners , without limitation of place and time , to access a variety of learning tools such as discussion forums , assessment , content repositories , and document sharing system. Electrovic Learning can be just as effective as face-to- face in a conventional classroom teaching and learning , if proper teaching techniques and well-organized. Based on the data processing has been done with membandingakan algorithm and Support Vector Machine Support Vector Machine by using the log data of students . Later in the test to get the accuracy and AUC values ​​of each algorithm so that the highest test results obtained by using support vector machine an accuracy of 85.02%, and AUC value of  0.710. \\n \",\"PeriodicalId\":384112,\"journal\":{\"name\":\"Jurnal Khatulistiwa Informatika\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Khatulistiwa Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31294/JKI.V7I1.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Khatulistiwa Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/JKI.V7I1.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电子学习系统是一个基于网络的交流平台,使学习者不受时间和地点的限制,可以访问各种学习工具,如论坛、评估、内容存储库和文档共享系统。如果教学技巧得当,组织得当,电子学习可以和传统的课堂教学一样有效。在此基础上,利用学生的日志数据,采用membandingakan算法和支持向量机(Support Vector Machine)对数据进行处理。随后在测试中得到各算法的准确率和AUC值,使得使用支持向量机获得的测试结果最高,准确率为85.02%,AUC值为0.710。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
METODE SVM SEBAGAI PENENTUAN KELULUSAN MAHASISWA PADA PEMBELAJARAN ELEKTRONIK
Electrovic learning system is a web -based communication platform that enables learners , without limitation of place and time , to access a variety of learning tools such as discussion forums , assessment , content repositories , and document sharing system. Electrovic Learning can be just as effective as face-to- face in a conventional classroom teaching and learning , if proper teaching techniques and well-organized. Based on the data processing has been done with membandingakan algorithm and Support Vector Machine Support Vector Machine by using the log data of students . Later in the test to get the accuracy and AUC values ​​of each algorithm so that the highest test results obtained by using support vector machine an accuracy of 85.02%, and AUC value of  0.710.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信