面向大数据集成的语义层构建

N. Soe, Tin Tin Yee, Ei Chaw Htoon
{"title":"面向大数据集成的语义层构建","authors":"N. Soe, Tin Tin Yee, Ei Chaw Htoon","doi":"10.1109/ICAIT51105.2020.9261799","DOIUrl":null,"url":null,"abstract":"Heterogeneity problem (data model, schema and semantics) is the one of the challenges of data integration from different big data stores. In order to overcome that problem in big data integration, semantic conceptual layer is constructed as an intermediate layer between different data stores by using ontology. To achieve this goal, there are two steps involved: generate local ontologies from different data systems and merge extracted local ontologies to build a global ontology. The main focus of the paper is merging ontologies which matches local ontologies by syntactic and semantic similarity measures. The two concepts are syntactically compared by Jaccard similarity measure and semantically compared by using WordNet. The matching approach takes into account the class name, internal structure (attributes) of the class, relationship (objectProperty relation, is-part-of relation) of the compared concepts. The performance of proposed algorithm will be compared other merging algorithms such as PROMPT.","PeriodicalId":173291,"journal":{"name":"2020 International Conference on Advanced Information Technologies (ICAIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Layer Construction for Big Data Integration\",\"authors\":\"N. Soe, Tin Tin Yee, Ei Chaw Htoon\",\"doi\":\"10.1109/ICAIT51105.2020.9261799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneity problem (data model, schema and semantics) is the one of the challenges of data integration from different big data stores. In order to overcome that problem in big data integration, semantic conceptual layer is constructed as an intermediate layer between different data stores by using ontology. To achieve this goal, there are two steps involved: generate local ontologies from different data systems and merge extracted local ontologies to build a global ontology. The main focus of the paper is merging ontologies which matches local ontologies by syntactic and semantic similarity measures. The two concepts are syntactically compared by Jaccard similarity measure and semantically compared by using WordNet. The matching approach takes into account the class name, internal structure (attributes) of the class, relationship (objectProperty relation, is-part-of relation) of the compared concepts. The performance of proposed algorithm will be compared other merging algorithms such as PROMPT.\",\"PeriodicalId\":173291,\"journal\":{\"name\":\"2020 International Conference on Advanced Information Technologies (ICAIT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Information Technologies (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT51105.2020.9261799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Information Technologies (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT51105.2020.9261799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异构问题(数据模型、模式和语义)是来自不同大数据存储的数据集成面临的挑战之一。为了克服大数据集成中存在的这一问题,利用本体构建语义概念层,作为不同数据存储之间的中间层。要实现这一目标,涉及两个步骤:从不同的数据系统生成本地本体,并合并提取的本地本体以构建全局本体。本文的重点是通过语法和语义相似度度量来合并与局部本体相匹配的本体。用Jaccard相似度度量对两个概念进行了语法比较,并用WordNet对两个概念进行了语义比较。匹配方法考虑了类名、类的内部结构(属性)、比较概念的关系(objectProperty关系、is-part-of关系)。并将该算法的性能与其他合并算法(如PROMPT)进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Layer Construction for Big Data Integration
Heterogeneity problem (data model, schema and semantics) is the one of the challenges of data integration from different big data stores. In order to overcome that problem in big data integration, semantic conceptual layer is constructed as an intermediate layer between different data stores by using ontology. To achieve this goal, there are two steps involved: generate local ontologies from different data systems and merge extracted local ontologies to build a global ontology. The main focus of the paper is merging ontologies which matches local ontologies by syntactic and semantic similarity measures. The two concepts are syntactically compared by Jaccard similarity measure and semantically compared by using WordNet. The matching approach takes into account the class name, internal structure (attributes) of the class, relationship (objectProperty relation, is-part-of relation) of the compared concepts. The performance of proposed algorithm will be compared other merging algorithms such as PROMPT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信