模糊和可能性聚类结果的验证

Z. Cebeci, A. T. Kavlak, Figen Yildiz
{"title":"模糊和可能性聚类结果的验证","authors":"Z. Cebeci, A. T. Kavlak, Figen Yildiz","doi":"10.1109/IDAP.2017.8090183","DOIUrl":null,"url":null,"abstract":"Unsupervised fuzzy clustering is an important tool for finding the meaningful patterns in data sets. In fuzzy clustering analyses, the performances of clustering algorithms are mostly compared using several internal fuzzy validity indices. However, since the well-known fuzzy indices have originally been proposed for working with membership degrees produced by the traditional Fuzzy c-means Clustering (FCM) algorithm, these indices cannot be used for possibilistic algorithms that produce typicality matrices instead of fuzzy membership matrices. Even more, the variants of FCM and PCM such as Possibilistic Fuzzy C-means (PFCM) and Fuzzy Possibilistic C-means (FPCM) simultaneously result with probabilistic and possibilistic membership degrees. Thus, some kind of validity indices are needed for working with both of these results. For this purpose, a few extended and generalized validity indices has been proposed in recent years. In this paper, the performances of these indices were examined for validating the clustering results from Unsupervised Possibilistic Fuzzy Clustering (UPFC), FCM and PCM algorithms. The findings showed that generalized versions of the fuzzy validity indices based on normalization of typicality degrees can be successfully used to validate the results from PCM, UPFC and the variants of FCM and PCM.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Validation of fuzzy and possibilistic clustering results\",\"authors\":\"Z. Cebeci, A. T. Kavlak, Figen Yildiz\",\"doi\":\"10.1109/IDAP.2017.8090183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised fuzzy clustering is an important tool for finding the meaningful patterns in data sets. In fuzzy clustering analyses, the performances of clustering algorithms are mostly compared using several internal fuzzy validity indices. However, since the well-known fuzzy indices have originally been proposed for working with membership degrees produced by the traditional Fuzzy c-means Clustering (FCM) algorithm, these indices cannot be used for possibilistic algorithms that produce typicality matrices instead of fuzzy membership matrices. Even more, the variants of FCM and PCM such as Possibilistic Fuzzy C-means (PFCM) and Fuzzy Possibilistic C-means (FPCM) simultaneously result with probabilistic and possibilistic membership degrees. Thus, some kind of validity indices are needed for working with both of these results. For this purpose, a few extended and generalized validity indices has been proposed in recent years. In this paper, the performances of these indices were examined for validating the clustering results from Unsupervised Possibilistic Fuzzy Clustering (UPFC), FCM and PCM algorithms. The findings showed that generalized versions of the fuzzy validity indices based on normalization of typicality degrees can be successfully used to validate the results from PCM, UPFC and the variants of FCM and PCM.\",\"PeriodicalId\":111721,\"journal\":{\"name\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAP.2017.8090183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

无监督模糊聚类是在数据集中发现有意义模式的重要工具。在模糊聚类分析中,聚类算法的性能主要是通过几个内部模糊有效性指标进行比较。然而,由于众所周知的模糊指标最初是为处理传统模糊c均值聚类(FCM)算法产生的隶属度而提出的,因此这些指标不能用于产生典型矩阵而不是模糊隶属矩阵的可能性算法。更重要的是,FCM和PCM的变体,如可能性模糊c -均值(PFCM)和模糊可能性c -均值(FPCM)同时具有概率和可能性隶属度。因此,需要某种有效性指标来处理这两个结果。为此,近年来提出了一些扩展的和广义的效度指标。本文对这些指标的性能进行了检验,以验证无监督可能性模糊聚类(UPFC)、FCM和PCM算法的聚类结果。结果表明,基于典型度归一化的模糊有效性指标的广义版本可以成功地用于验证来自PCM, UPFC以及FCM和PCM变体的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of fuzzy and possibilistic clustering results
Unsupervised fuzzy clustering is an important tool for finding the meaningful patterns in data sets. In fuzzy clustering analyses, the performances of clustering algorithms are mostly compared using several internal fuzzy validity indices. However, since the well-known fuzzy indices have originally been proposed for working with membership degrees produced by the traditional Fuzzy c-means Clustering (FCM) algorithm, these indices cannot be used for possibilistic algorithms that produce typicality matrices instead of fuzzy membership matrices. Even more, the variants of FCM and PCM such as Possibilistic Fuzzy C-means (PFCM) and Fuzzy Possibilistic C-means (FPCM) simultaneously result with probabilistic and possibilistic membership degrees. Thus, some kind of validity indices are needed for working with both of these results. For this purpose, a few extended and generalized validity indices has been proposed in recent years. In this paper, the performances of these indices were examined for validating the clustering results from Unsupervised Possibilistic Fuzzy Clustering (UPFC), FCM and PCM algorithms. The findings showed that generalized versions of the fuzzy validity indices based on normalization of typicality degrees can be successfully used to validate the results from PCM, UPFC and the variants of FCM and PCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信