基于决策树的神经记录植入尖峰分类的高效VLSI实现

Yuning Yang, Sam Boling, A. Mason
{"title":"基于决策树的神经记录植入尖峰分类的高效VLSI实现","authors":"Yuning Yang, Sam Boling, A. Mason","doi":"10.1109/BioCAS.2014.6981742","DOIUrl":null,"url":null,"abstract":"Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Power-area efficient VLSI implementation of decision tree based spike classification for neural recording implants\",\"authors\":\"Yuning Yang, Sam Boling, A. Mason\",\"doi\":\"10.1109/BioCAS.2014.6981742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.\",\"PeriodicalId\":414575,\"journal\":{\"name\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2014.6981742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

脉冲分类是降低脑机接口数据速率的最后一步。本文提出了一种新的基于决策树的脉冲分类方法,其分类精度与基于L1距离的方法相当。该设计是针对130nm CMOS合成的,其架构是交错八个通道,以优化功率面积权衡。资源分析表明,该设计在时钟频率为50KHz时,每通道功耗为32nW,每通道面积为5115μm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-area efficient VLSI implementation of decision tree based spike classification for neural recording implants
Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信