超越分析:流处理系统的演变

Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, Asterios Katsifodimos
{"title":"超越分析:流处理系统的演变","authors":"Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, Asterios Katsifodimos","doi":"10.1145/3318464.3383131","DOIUrl":null,"url":null,"abstract":"Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. The goal of this tutorial is threefold. First, we aim to review and highlight noteworthy past research findings, which were largely ignored until very recently. Second, we intend to underline the differences between early ('00-'10) and modern ('11-'18) streaming systems, and how those systems have evolved through the years. Most importantly, we wish to turn the attention of the database community to recent trends: streaming systems are no longer used only for classic stream processing workloads, namely window aggregates and joins. Instead, modern streaming systems are being increasingly used to deploy general event-driven applications in a scalable fashion, challenging the design decisions, architecture and intended use of existing stream processing systems.","PeriodicalId":436122,"journal":{"name":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Beyond Analytics: The Evolution of Stream Processing Systems\",\"authors\":\"Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, Asterios Katsifodimos\",\"doi\":\"10.1145/3318464.3383131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. The goal of this tutorial is threefold. First, we aim to review and highlight noteworthy past research findings, which were largely ignored until very recently. Second, we intend to underline the differences between early ('00-'10) and modern ('11-'18) streaming systems, and how those systems have evolved through the years. Most importantly, we wish to turn the attention of the database community to recent trends: streaming systems are no longer used only for classic stream processing workloads, namely window aggregates and joins. Instead, modern streaming systems are being increasingly used to deploy general event-driven applications in a scalable fashion, challenging the design decisions, architecture and intended use of existing stream processing systems.\",\"PeriodicalId\":436122,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318464.3383131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318464.3383131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

流处理作为一个活跃的研究领域已经有20多年的历史了,但由于研究社区和众多全球开源社区最近的成功努力,它现在正见证着它的黄金时期。本教程的目标有三个。首先,我们的目标是回顾和强调值得注意的过去的研究成果,这些研究成果直到最近才在很大程度上被忽视。其次,我们打算强调早期(2000年至2010年)和现代(2011年至2018年)流系统之间的差异,以及这些系统是如何经过多年发展的。最重要的是,我们希望将数据库社区的注意力转向最近的趋势:流系统不再仅用于经典的流处理工作负载,即窗口聚合和连接。相反,现代流系统正越来越多地用于以可扩展的方式部署一般的事件驱动应用程序,挑战现有流处理系统的设计决策、架构和预期用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Analytics: The Evolution of Stream Processing Systems
Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. The goal of this tutorial is threefold. First, we aim to review and highlight noteworthy past research findings, which were largely ignored until very recently. Second, we intend to underline the differences between early ('00-'10) and modern ('11-'18) streaming systems, and how those systems have evolved through the years. Most importantly, we wish to turn the attention of the database community to recent trends: streaming systems are no longer used only for classic stream processing workloads, namely window aggregates and joins. Instead, modern streaming systems are being increasingly used to deploy general event-driven applications in a scalable fashion, challenging the design decisions, architecture and intended use of existing stream processing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信