scSAGAN:一种基于半监督学习和概率潜在语义分析的scRNA-seq数据输入方法

Zehao Xiong, Xiangtao Chen, Jiawei Luo, Cong Shen, Zhongyuan Xu
{"title":"scSAGAN:一种基于半监督学习和概率潜在语义分析的scRNA-seq数据输入方法","authors":"Zehao Xiong, Xiangtao Chen, Jiawei Luo, Cong Shen, Zhongyuan Xu","doi":"10.1109/BIBM55620.2022.9995463","DOIUrl":null,"url":null,"abstract":"single-cell RNA-sequencing (scRNA-seq) technology can reveal cellular heterogeneity with high throughput and resolution, facilitating the profiling of single-cell transcriptomes. However, due to some experimental factors, a large number of missing values are generated in scRNA-seq data, which are called dropout events, and this phenomenon affects the downstream analysis. Imputation is an effective denoising method, but existing imputation methods still face a huge challenge: lack of interpretability. In this study, we propose single-cell Self-Attention Generative Adversarial Networks(scSAGAN), a semi-supervised imputation method for scRNA-seq data. scSAGAN mainly uses Semi-Supervised Learning (SSL) and Probabilistic Latent Semantic Analysis (PLSA), which can not only learn the potential characteristics of different types of cells but explain their imputation behavior. In clustering experiments, scSAGAN exhibits better clustering performance than all baselines on 7 datasets. Next, we interpret the imputation behavior of scSAGAN on datasets such as Alzheimer’s disease and find causative genes associated with the corresponding datasets. scSAGAN is currently an open-source method, available at https://github.com/zehaoxiongl23/scSAGAN.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scSAGAN: A scRNA-seq data imputation method based on Semi-Supervised Learning and Probabilistic Latent Semantic Analysis\",\"authors\":\"Zehao Xiong, Xiangtao Chen, Jiawei Luo, Cong Shen, Zhongyuan Xu\",\"doi\":\"10.1109/BIBM55620.2022.9995463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"single-cell RNA-sequencing (scRNA-seq) technology can reveal cellular heterogeneity with high throughput and resolution, facilitating the profiling of single-cell transcriptomes. However, due to some experimental factors, a large number of missing values are generated in scRNA-seq data, which are called dropout events, and this phenomenon affects the downstream analysis. Imputation is an effective denoising method, but existing imputation methods still face a huge challenge: lack of interpretability. In this study, we propose single-cell Self-Attention Generative Adversarial Networks(scSAGAN), a semi-supervised imputation method for scRNA-seq data. scSAGAN mainly uses Semi-Supervised Learning (SSL) and Probabilistic Latent Semantic Analysis (PLSA), which can not only learn the potential characteristics of different types of cells but explain their imputation behavior. In clustering experiments, scSAGAN exhibits better clustering performance than all baselines on 7 datasets. Next, we interpret the imputation behavior of scSAGAN on datasets such as Alzheimer’s disease and find causative genes associated with the corresponding datasets. scSAGAN is currently an open-source method, available at https://github.com/zehaoxiongl23/scSAGAN.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞rna测序(scRNA-seq)技术能够以高通量和高分辨率揭示细胞异质性,为单细胞转录组分析提供便利。然而,由于一些实验因素,在scRNA-seq数据中产生了大量缺失值,称为dropout事件,这种现象影响了下游分析。归算是一种有效的去噪方法,但现有的归算方法仍然面临着可解释性不足的巨大挑战。在这项研究中,我们提出了单细胞自注意生成对抗网络(scSAGAN),这是一种针对scRNA-seq数据的半监督插补方法。scSAGAN主要采用半监督学习(Semi-Supervised Learning, SSL)和概率潜语义分析(Probabilistic Latent Semantic Analysis, PLSA),不仅可以学习不同类型细胞的潜在特征,还可以解释它们的imputation行为。在聚类实验中,scSAGAN在7个数据集上表现出比所有基线更好的聚类性能。接下来,我们解释scSAGAN在阿尔茨海默病等数据集上的归算行为,并找到与相应数据集相关的致病基因。scSAGAN目前是一种开源方法,可在https://github.com/zehaoxiongl23/scSAGAN上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scSAGAN: A scRNA-seq data imputation method based on Semi-Supervised Learning and Probabilistic Latent Semantic Analysis
single-cell RNA-sequencing (scRNA-seq) technology can reveal cellular heterogeneity with high throughput and resolution, facilitating the profiling of single-cell transcriptomes. However, due to some experimental factors, a large number of missing values are generated in scRNA-seq data, which are called dropout events, and this phenomenon affects the downstream analysis. Imputation is an effective denoising method, but existing imputation methods still face a huge challenge: lack of interpretability. In this study, we propose single-cell Self-Attention Generative Adversarial Networks(scSAGAN), a semi-supervised imputation method for scRNA-seq data. scSAGAN mainly uses Semi-Supervised Learning (SSL) and Probabilistic Latent Semantic Analysis (PLSA), which can not only learn the potential characteristics of different types of cells but explain their imputation behavior. In clustering experiments, scSAGAN exhibits better clustering performance than all baselines on 7 datasets. Next, we interpret the imputation behavior of scSAGAN on datasets such as Alzheimer’s disease and find causative genes associated with the corresponding datasets. scSAGAN is currently an open-source method, available at https://github.com/zehaoxiongl23/scSAGAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信