Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer
{"title":"用于GPGPU的轻量级静默数据损坏错误检测器","authors":"Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer","doi":"10.1109/IPDPS.2011.36","DOIUrl":null,"url":null,"abstract":"High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Hauberk: Lightweight Silent Data Corruption Error Detector for GPGPU\",\"authors\":\"Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer\",\"doi\":\"10.1109/IPDPS.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (\",\"PeriodicalId\":355100,\"journal\":{\"name\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hauberk: Lightweight Silent Data Corruption Error Detector for GPGPU
High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (