Behnam Behinaein, Anubha Bhatti, D. Rodenburg, P. Hungler, A. Etemad
{"title":"一种用于心电应力检测的变压器结构","authors":"Behnam Behinaein, Anubha Bhatti, D. Rodenburg, P. Hungler, A. Etemad","doi":"10.1145/3460421.3480427","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) has been widely used for emotion recognition. This paper presents a deep neural network based on convolutional layers and a transformer mechanism to detect stress using ECG signals. We perform leave-one-subject-out experiments on two publicly available datasets, WESAD and SWELL-KW, to evaluate our method. Our experiments show that the proposed model achieves strong results, comparable or better than the state-of-the-art models for ECG-based stress detection on these two datasets. Moreover, our method is end-to-end, does not require handcrafted features, and can learn robust representations with only a few convolutional blocks and the transformer component.","PeriodicalId":395295,"journal":{"name":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Transformer Architecture for Stress Detection from ECG\",\"authors\":\"Behnam Behinaein, Anubha Bhatti, D. Rodenburg, P. Hungler, A. Etemad\",\"doi\":\"10.1145/3460421.3480427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) has been widely used for emotion recognition. This paper presents a deep neural network based on convolutional layers and a transformer mechanism to detect stress using ECG signals. We perform leave-one-subject-out experiments on two publicly available datasets, WESAD and SWELL-KW, to evaluate our method. Our experiments show that the proposed model achieves strong results, comparable or better than the state-of-the-art models for ECG-based stress detection on these two datasets. Moreover, our method is end-to-end, does not require handcrafted features, and can learn robust representations with only a few convolutional blocks and the transformer component.\",\"PeriodicalId\":395295,\"journal\":{\"name\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460421.3480427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460421.3480427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Transformer Architecture for Stress Detection from ECG
Electrocardiogram (ECG) has been widely used for emotion recognition. This paper presents a deep neural network based on convolutional layers and a transformer mechanism to detect stress using ECG signals. We perform leave-one-subject-out experiments on two publicly available datasets, WESAD and SWELL-KW, to evaluate our method. Our experiments show that the proposed model achieves strong results, comparable or better than the state-of-the-art models for ECG-based stress detection on these two datasets. Moreover, our method is end-to-end, does not require handcrafted features, and can learn robust representations with only a few convolutional blocks and the transformer component.