单符合序列拟循环稀疏感知矩阵的确定性构造

Weijun Zeng, Huali Wang, Guangjie Xu, Lu Gan
{"title":"单符合序列拟循环稀疏感知矩阵的确定性构造","authors":"Weijun Zeng, Huali Wang, Guangjie Xu, Lu Gan","doi":"10.1109/SAMPTA.2015.7148870","DOIUrl":null,"url":null,"abstract":"In this paper, a new class of deterministic sparse matrices derived from Quasi-Cyclic (QC) low-density parity-check (LDPC) codes is presented for compressed sensing (CS). In contrast to random and other deterministic matrices, the proposed matrices are generated based on circulant permutation matrices, which require less memory for storage and low computational cost for sensing. Its size is also quite flexible compared with other existing fixed-sizes deterministic matrices. Furthermore, both the coherence and null space property of proposed matrices are investigated, specially, the upper bounds of signal sparsity k is given for exactly recovering. Finally, we carry out many numerical simulations and show that our sparse matrices outperform Gaussian random matrices under some scenes.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deterministic construction of Quasi-Cyclic sparse sensing matrices from one-coincidence sequence\",\"authors\":\"Weijun Zeng, Huali Wang, Guangjie Xu, Lu Gan\",\"doi\":\"10.1109/SAMPTA.2015.7148870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new class of deterministic sparse matrices derived from Quasi-Cyclic (QC) low-density parity-check (LDPC) codes is presented for compressed sensing (CS). In contrast to random and other deterministic matrices, the proposed matrices are generated based on circulant permutation matrices, which require less memory for storage and low computational cost for sensing. Its size is also quite flexible compared with other existing fixed-sizes deterministic matrices. Furthermore, both the coherence and null space property of proposed matrices are investigated, specially, the upper bounds of signal sparsity k is given for exactly recovering. Finally, we carry out many numerical simulations and show that our sparse matrices outperform Gaussian random matrices under some scenes.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一类新的确定性稀疏矩阵,该矩阵由准循环(QC)低密度奇偶校验(LDPC)码导出,用于压缩感知。与随机矩阵和其他确定性矩阵相比,本文提出的矩阵是基于循环排列矩阵生成的,它需要较少的存储内存和较低的计算成本。与其他现有的固定大小的确定性矩阵相比,它的大小也非常灵活。进一步研究了所提矩阵的相干性和零空间性质,特别是给出了精确恢复信号稀疏度k的上界。最后,我们进行了大量的数值模拟,结果表明我们的稀疏矩阵在某些场景下优于高斯随机矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic construction of Quasi-Cyclic sparse sensing matrices from one-coincidence sequence
In this paper, a new class of deterministic sparse matrices derived from Quasi-Cyclic (QC) low-density parity-check (LDPC) codes is presented for compressed sensing (CS). In contrast to random and other deterministic matrices, the proposed matrices are generated based on circulant permutation matrices, which require less memory for storage and low computational cost for sensing. Its size is also quite flexible compared with other existing fixed-sizes deterministic matrices. Furthermore, both the coherence and null space property of proposed matrices are investigated, specially, the upper bounds of signal sparsity k is given for exactly recovering. Finally, we carry out many numerical simulations and show that our sparse matrices outperform Gaussian random matrices under some scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信