基于模糊k均值的代表性负荷曲线确定

P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa
{"title":"基于模糊k均值的代表性负荷曲线确定","authors":"P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa","doi":"10.1109/PEOCO.2010.5559257","DOIUrl":null,"url":null,"abstract":"With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Determination of representative load curve based on Fuzzy K-Means\",\"authors\":\"P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa\",\"doi\":\"10.1109/PEOCO.2010.5559257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.\",\"PeriodicalId\":379868,\"journal\":{\"name\":\"2010 4th International Power Engineering and Optimization Conference (PEOCO)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Power Engineering and Optimization Conference (PEOCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEOCO.2010.5559257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

由于一个用户或一组用户的信息量大(日负荷曲线数量大),因此有必要对代表性负荷曲线进行分类和构建。通过聚类分析,可以在相似负荷曲线的集合中建立RLC。本文提出了一种基于RLC电学特性的模糊聚类技术。本文采用模糊k均值(FKM)方法。本工作中使用的负载数据来自配电网中不同馈线的实际测量值。采用全局准则法和Bellman-Zadeh最大化原则折衷聚类有效性指标,确定最优聚类数。本文还介绍了合适的加权指数m的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of representative load curve based on Fuzzy K-Means
With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信