P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa
{"title":"基于模糊k均值的代表性负荷曲线确定","authors":"P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa","doi":"10.1109/PEOCO.2010.5559257","DOIUrl":null,"url":null,"abstract":"With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Determination of representative load curve based on Fuzzy K-Means\",\"authors\":\"P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa\",\"doi\":\"10.1109/PEOCO.2010.5559257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.\",\"PeriodicalId\":379868,\"journal\":{\"name\":\"2010 4th International Power Engineering and Optimization Conference (PEOCO)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Power Engineering and Optimization Conference (PEOCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEOCO.2010.5559257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determination of representative load curve based on Fuzzy K-Means
With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.