{"title":"高光谱图像分类的尺度-光谱-空间注意网络","authors":"Usama Derbashi, E. Aptoula","doi":"10.1109/SIU55565.2022.9864719","DOIUrl":null,"url":null,"abstract":"Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Spectral-Spatial Attention Network for Hyperspectral Image Classification\",\"authors\":\"Usama Derbashi, E. Aptoula\",\"doi\":\"10.1109/SIU55565.2022.9864719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scale-Spectral-Spatial Attention Network for Hyperspectral Image Classification
Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.