大麦糊粉质原生质体的细胞死亡是由活性氧介导的。

P. Bethke, Russell L. Jones
{"title":"大麦糊粉质原生质体的细胞死亡是由活性氧介导的。","authors":"P. Bethke, Russell L. Jones","doi":"10.1046/J.1365-313X.2001.00930.X","DOIUrl":null,"url":null,"abstract":"The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.","PeriodicalId":142476,"journal":{"name":"The Plant journal : for cell and molecular biology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"226","resultStr":"{\"title\":\"Cell death of barley aleurone protoplasts is mediated by reactive oxygen species.\",\"authors\":\"P. Bethke, Russell L. Jones\",\"doi\":\"10.1046/J.1365-313X.2001.00930.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.\",\"PeriodicalId\":142476,\"journal\":{\"name\":\"The Plant journal : for cell and molecular biology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"226\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant journal : for cell and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/J.1365-313X.2001.00930.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant journal : for cell and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/J.1365-313X.2001.00930.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 226

摘要

大麦糊粉层是一种终末分化的分泌组织,其活性受激素控制。植物激素赤霉素(GA)刺激水解酶的分泌,引发程序性细胞死亡(PCD)的发生。脱落酸(ABA)能拮抗GA的作用,抑制酶分泌和PCD。活性氧(ROS)在许多类型的PCD中起着关键作用,本文提供的数据表明ROS在激素调节的大麦糊粉细胞死亡中起着重要作用。将糊粉层或原生质体在含H(2)O(2)的培养基中孵育可导致ga处理的糊粉细胞死亡,而aba处理的糊粉细胞则不会死亡。因此,被设定为死亡的细胞比被设定为存活的细胞更不能抵抗活性氧。蓝光或UV-A光照射大麦糊粉原生质体后,胞内H(2)O(2)产量迅速增加。ga处理的原生质体会随着细胞内H(2)O(2)产量的增加而迅速死亡,但aba处理的原生质体不会死亡。抗氧化剂可以减缓光致死亡的速度,用抗氧化剂丁基羟基甲苯在黑暗中培养原生质体可以降低激素致死亡的速度。综上所述,这些数据表明,与aba处理的原生质体相比,ga处理的糊粉粒原生质体耐受内源或外源H(2)O(2)的能力更弱,并强烈表明ROS是大麦糊粉粒细胞激素调节的细胞死亡途径的组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell death of barley aleurone protoplasts is mediated by reactive oxygen species.
The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信