静电分析的计算电磁学比较

M. Dhamodaran, R. Dhanasekaran
{"title":"静电分析的计算电磁学比较","authors":"M. Dhamodaran, R. Dhanasekaran","doi":"10.4018/ijeoe.2014070106","DOIUrl":null,"url":null,"abstract":"This paper presents comparative studies on different numerical methods like method of moments (MOM), Boundary Element Method (BEM), Finite element method (FEM), Finite difference method (FDM), Charge Simulation method (CSM) and Surface charge method. The evaluation of the capacitance of various structures having different geometrical shapes is importance to study the behavior of electrostatic charge analysis. The MOM is based upon the transformation of an integral equation, into a matrix equation by employing expansion of the unknown in terms of known basis functions with unknown coefficients such as charge distribution and hence the capacitance is to be determined. To illustrate the usefulness of this technique, apply these methods to the computation of capacitance of different conducting shapes. This paper reviews the results of computing the capacitance-per-unit length with the other methods. The capacitance of charged conducting plates is reviewed by different methods.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of Computational Electromagnetics for Electrostatic Analysis\",\"authors\":\"M. Dhamodaran, R. Dhanasekaran\",\"doi\":\"10.4018/ijeoe.2014070106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents comparative studies on different numerical methods like method of moments (MOM), Boundary Element Method (BEM), Finite element method (FEM), Finite difference method (FDM), Charge Simulation method (CSM) and Surface charge method. The evaluation of the capacitance of various structures having different geometrical shapes is importance to study the behavior of electrostatic charge analysis. The MOM is based upon the transformation of an integral equation, into a matrix equation by employing expansion of the unknown in terms of known basis functions with unknown coefficients such as charge distribution and hence the capacitance is to be determined. To illustrate the usefulness of this technique, apply these methods to the computation of capacitance of different conducting shapes. This paper reviews the results of computing the capacitance-per-unit length with the other methods. The capacitance of charged conducting plates is reviewed by different methods.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2014070106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2014070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文对矩量法(MOM)、边界元法(BEM)、有限元法(FEM)、有限差分法(FDM)、电荷模拟法(CSM)和表面电荷法等不同的数值方法进行了比较研究。对具有不同几何形状的各种结构的电容进行评价,对于研究静电电荷分析的行为具有重要意义。MOM是基于将一个积分方程转化为一个矩阵方程,通过利用已知基函数与未知系数(如电荷分布)的未知展开,从而确定电容。为了说明这种技术的有用性,将这些方法应用于计算不同导体形状的电容。本文综述了用其他方法计算单位长度电容的结果。用不同的方法研究了带电导体板的电容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Computational Electromagnetics for Electrostatic Analysis
This paper presents comparative studies on different numerical methods like method of moments (MOM), Boundary Element Method (BEM), Finite element method (FEM), Finite difference method (FDM), Charge Simulation method (CSM) and Surface charge method. The evaluation of the capacitance of various structures having different geometrical shapes is importance to study the behavior of electrostatic charge analysis. The MOM is based upon the transformation of an integral equation, into a matrix equation by employing expansion of the unknown in terms of known basis functions with unknown coefficients such as charge distribution and hence the capacitance is to be determined. To illustrate the usefulness of this technique, apply these methods to the computation of capacitance of different conducting shapes. This paper reviews the results of computing the capacitance-per-unit length with the other methods. The capacitance of charged conducting plates is reviewed by different methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信