{"title":"基于Ad节点的降阶粗网格网络模型的有效自适应与标定","authors":"S. Krogstad, Ø. Klemetsdal, Knut-Andreas Lie","doi":"10.2118/212207-ms","DOIUrl":null,"url":null,"abstract":"\n Network models have proved to be an efficient tool for building data-driven proxy models that match observed production data or reduced-order models that match simulated data. A particularly versatile approach is to construct the network topology so that it mimics the intercell connection in a volumetric grid. That is, one first builds a network of \"reservoir nodes\" to which wells can be subsequently connected. The network model is realized inside a fully differentiable simulator. To train the model, we use a standard mismatch minimization formulation, optimized by a Gauss-Newton method with mismatch Jacobians obtained by solving adjoint equations with multiple right-hand sides. One can also use a quasi-Newton method, but Gauss-Newton is significantly more efficient as long as the number of wells is not too high. A practical challenge in setting up such network models is to determine the granularity of the network. Herein, we demonstrate how this can be mitigated by using a dynamic graph adaption algorithm to find a good granularity that improves predictability both inside and slightly outside the range of the training data.","PeriodicalId":225811,"journal":{"name":"Day 1 Tue, March 28, 2023","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Adaptation and Calibration of Ad joint-Based Reduced-Order Coarse-Grid Network Models\",\"authors\":\"S. Krogstad, Ø. Klemetsdal, Knut-Andreas Lie\",\"doi\":\"10.2118/212207-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Network models have proved to be an efficient tool for building data-driven proxy models that match observed production data or reduced-order models that match simulated data. A particularly versatile approach is to construct the network topology so that it mimics the intercell connection in a volumetric grid. That is, one first builds a network of \\\"reservoir nodes\\\" to which wells can be subsequently connected. The network model is realized inside a fully differentiable simulator. To train the model, we use a standard mismatch minimization formulation, optimized by a Gauss-Newton method with mismatch Jacobians obtained by solving adjoint equations with multiple right-hand sides. One can also use a quasi-Newton method, but Gauss-Newton is significantly more efficient as long as the number of wells is not too high. A practical challenge in setting up such network models is to determine the granularity of the network. Herein, we demonstrate how this can be mitigated by using a dynamic graph adaption algorithm to find a good granularity that improves predictability both inside and slightly outside the range of the training data.\",\"PeriodicalId\":225811,\"journal\":{\"name\":\"Day 1 Tue, March 28, 2023\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, March 28, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/212207-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, March 28, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/212207-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Adaptation and Calibration of Ad joint-Based Reduced-Order Coarse-Grid Network Models
Network models have proved to be an efficient tool for building data-driven proxy models that match observed production data or reduced-order models that match simulated data. A particularly versatile approach is to construct the network topology so that it mimics the intercell connection in a volumetric grid. That is, one first builds a network of "reservoir nodes" to which wells can be subsequently connected. The network model is realized inside a fully differentiable simulator. To train the model, we use a standard mismatch minimization formulation, optimized by a Gauss-Newton method with mismatch Jacobians obtained by solving adjoint equations with multiple right-hand sides. One can also use a quasi-Newton method, but Gauss-Newton is significantly more efficient as long as the number of wells is not too high. A practical challenge in setting up such network models is to determine the granularity of the network. Herein, we demonstrate how this can be mitigated by using a dynamic graph adaption algorithm to find a good granularity that improves predictability both inside and slightly outside the range of the training data.