多核微处理器中减少热热点的分布式任务迁移

Zao Liu, Xin Huang, S. Tan, Hai Wang, H. Tang
{"title":"多核微处理器中减少热热点的分布式任务迁移","authors":"Zao Liu, Xin Huang, S. Tan, Hai Wang, H. Tang","doi":"10.1109/ASICON.2013.6811821","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new distributed task migration method to reduce the thermal hot spots and on-chip temperature variance, which leads to better thermal reliability and reduced package costs of emerging many-core processors. The novelty of the new algorithm is that the task migration is done in a fully distributed way while we can still maintain some degrees of global view to guide the process. This is enabled by recently proposed distributed state tracking technique to dynamically estimate the average temperature of all the cores, which provides the important global view of the temperature of the whole chip to efficiently guide local task migration among cores. In addition, the local task migration will be carried out based on the power, temperature, and load influence from neighboring cores. Our experimental results on a 36 core microprocessor demonstrate that the proposed method can reduce 30% more thermal hot spots compared with the existing distributed thermal management method, leading to more balanced temperature distribution of many-core microprocessor chips.","PeriodicalId":150654,"journal":{"name":"2013 IEEE 10th International Conference on ASIC","volume":"10 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Distributed task migration for thermal hot spot reduction in many-core microprocessors\",\"authors\":\"Zao Liu, Xin Huang, S. Tan, Hai Wang, H. Tang\",\"doi\":\"10.1109/ASICON.2013.6811821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new distributed task migration method to reduce the thermal hot spots and on-chip temperature variance, which leads to better thermal reliability and reduced package costs of emerging many-core processors. The novelty of the new algorithm is that the task migration is done in a fully distributed way while we can still maintain some degrees of global view to guide the process. This is enabled by recently proposed distributed state tracking technique to dynamically estimate the average temperature of all the cores, which provides the important global view of the temperature of the whole chip to efficiently guide local task migration among cores. In addition, the local task migration will be carried out based on the power, temperature, and load influence from neighboring cores. Our experimental results on a 36 core microprocessor demonstrate that the proposed method can reduce 30% more thermal hot spots compared with the existing distributed thermal management method, leading to more balanced temperature distribution of many-core microprocessor chips.\",\"PeriodicalId\":150654,\"journal\":{\"name\":\"2013 IEEE 10th International Conference on ASIC\",\"volume\":\"10 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Conference on ASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON.2013.6811821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2013.6811821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们提出了一种新的分布式任务迁移方法,以减少热热点和片上温度差异,从而提高新兴多核处理器的热可靠性和降低封装成本。新算法的新颖之处在于任务迁移以完全分布式的方式完成,同时我们仍然可以保持一定程度的全局视图来指导过程。最近提出的分布式状态跟踪技术可以动态估计所有内核的平均温度,为整个芯片的温度提供重要的全局视图,从而有效地指导局部任务在内核之间的迁移。此外,本地任务迁移将根据邻近核心的功率、温度和负载影响进行。在36核微处理器上的实验结果表明,与现有的分布式热管理方法相比,该方法可以减少30%的热热点,从而使多核微处理器芯片的温度分布更加均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed task migration for thermal hot spot reduction in many-core microprocessors
In this paper, we propose a new distributed task migration method to reduce the thermal hot spots and on-chip temperature variance, which leads to better thermal reliability and reduced package costs of emerging many-core processors. The novelty of the new algorithm is that the task migration is done in a fully distributed way while we can still maintain some degrees of global view to guide the process. This is enabled by recently proposed distributed state tracking technique to dynamically estimate the average temperature of all the cores, which provides the important global view of the temperature of the whole chip to efficiently guide local task migration among cores. In addition, the local task migration will be carried out based on the power, temperature, and load influence from neighboring cores. Our experimental results on a 36 core microprocessor demonstrate that the proposed method can reduce 30% more thermal hot spots compared with the existing distributed thermal management method, leading to more balanced temperature distribution of many-core microprocessor chips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信