基于分位数的变异实现测度:金融数据中离群观测的新检验

Charles S. Bos, P. Janus
{"title":"基于分位数的变异实现测度:金融数据中离群观测的新检验","authors":"Charles S. Bos, P. Janus","doi":"10.2139/ssrn.2335900","DOIUrl":null,"url":null,"abstract":"In this article we introduce a new class of test statistics designed to detect the occurrence of abnormal observations. It derives from the joint distribution of moment- and quantile-based estimators of power variation sigma^r, under the assumption of a normal distribution for the underlying data. Our novel tests can be applied to test for jumps and are found to be generally more powerful than widely used alternatives. An extensive empirical illustration for high-frequency equity data suggests that jumps can be more prevalent than inferred from existing tests on the second or third moment of the data.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"149 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Quantile-Based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data\",\"authors\":\"Charles S. Bos, P. Janus\",\"doi\":\"10.2139/ssrn.2335900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we introduce a new class of test statistics designed to detect the occurrence of abnormal observations. It derives from the joint distribution of moment- and quantile-based estimators of power variation sigma^r, under the assumption of a normal distribution for the underlying data. Our novel tests can be applied to test for jumps and are found to be generally more powerful than widely used alternatives. An extensive empirical illustration for high-frequency equity data suggests that jumps can be more prevalent than inferred from existing tests on the second or third moment of the data.\",\"PeriodicalId\":425229,\"journal\":{\"name\":\"ERN: Hypothesis Testing (Topic)\",\"volume\":\"149 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Hypothesis Testing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2335900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2335900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们介绍了一类新的检验统计量,用于检测异常观测的发生。它来源于基于矩量和分位数的功率变化σ ^r估计量的联合分布,假设基础数据为正态分布。我们的新测试可以用于测试跳跃,并且发现通常比广泛使用的替代方法更强大。对高频股票数据的广泛实证说明表明,跳跃可能比从现有的对数据的第二或第三时刻的测试推断的更为普遍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quantile-Based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data
In this article we introduce a new class of test statistics designed to detect the occurrence of abnormal observations. It derives from the joint distribution of moment- and quantile-based estimators of power variation sigma^r, under the assumption of a normal distribution for the underlying data. Our novel tests can be applied to test for jumps and are found to be generally more powerful than widely used alternatives. An extensive empirical illustration for high-frequency equity data suggests that jumps can be more prevalent than inferred from existing tests on the second or third moment of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信