MTPL-G2T:基于混合模板提示学习的图到文本生成任务

Jianhe Cen, Kun Zhang, Jingyuan Li, Shiqi Sun, Yuanzhuo Wang
{"title":"MTPL-G2T:基于混合模板提示学习的图到文本生成任务","authors":"Jianhe Cen, Kun Zhang, Jingyuan Li, Shiqi Sun, Yuanzhuo Wang","doi":"10.1109/WI-IAT55865.2022.00089","DOIUrl":null,"url":null,"abstract":"The Graph-to-Text(G2T) generation tasks are mainly done by pre-training and fine-tuning currently, but the drawback of fine-tuning is that it changes all parameters of the pre-trained model. In this paper, we aim to accomplish the text generation task through prompt learning so that no or a small number of model parameters can be changed. Also, we analyze the impact of three different prompt templates on the generation results. The results show that when the pre-trained language model is large (e.g., T5), prompt learning is competitive with finetuning, but the number of parameters that need to be modified for prompt learning is much smaller than for fine-tuning; meanwhile, compared with text templates and soft templates, using mixed prompt templates can make the model converge faster.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MTPL-G2T: Graph-to-Text Generation Task Based on Mixed Template Prompt Learning\",\"authors\":\"Jianhe Cen, Kun Zhang, Jingyuan Li, Shiqi Sun, Yuanzhuo Wang\",\"doi\":\"10.1109/WI-IAT55865.2022.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Graph-to-Text(G2T) generation tasks are mainly done by pre-training and fine-tuning currently, but the drawback of fine-tuning is that it changes all parameters of the pre-trained model. In this paper, we aim to accomplish the text generation task through prompt learning so that no or a small number of model parameters can be changed. Also, we analyze the impact of three different prompt templates on the generation results. The results show that when the pre-trained language model is large (e.g., T5), prompt learning is competitive with finetuning, but the number of parameters that need to be modified for prompt learning is much smaller than for fine-tuning; meanwhile, compared with text templates and soft templates, using mixed prompt templates can make the model converge faster.\",\"PeriodicalId\":345445,\"journal\":{\"name\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT55865.2022.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

G2T (Graph-to-Text)生成任务目前主要通过预训练和微调来完成,但微调的缺点是它会改变预训练模型的所有参数。在本文中,我们的目标是通过提示学习来完成文本生成任务,从而不改变或少量改变模型参数。此外,我们还分析了三种不同的提示模板对生成结果的影响。结果表明:当预训练语言模型较大时(如T5),提示学习与微调具有竞争优势,但提示学习需要修改的参数数量远小于微调;同时,与文本模板和软模板相比,使用混合提示模板可以使模型更快收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MTPL-G2T: Graph-to-Text Generation Task Based on Mixed Template Prompt Learning
The Graph-to-Text(G2T) generation tasks are mainly done by pre-training and fine-tuning currently, but the drawback of fine-tuning is that it changes all parameters of the pre-trained model. In this paper, we aim to accomplish the text generation task through prompt learning so that no or a small number of model parameters can be changed. Also, we analyze the impact of three different prompt templates on the generation results. The results show that when the pre-trained language model is large (e.g., T5), prompt learning is competitive with finetuning, but the number of parameters that need to be modified for prompt learning is much smaller than for fine-tuning; meanwhile, compared with text templates and soft templates, using mixed prompt templates can make the model converge faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信