{"title":"用于图像字幕的混合空间转换器","authors":"Jincheng Zheng, Chi-Man Pun","doi":"10.1145/3561613.3561617","DOIUrl":null,"url":null,"abstract":"Recent years, the transformer-based model has achieved great success in many tasks such as machine translation. This encoder-decoder architecture is proved to be useful for image captioning tasks as well. We propose a novel Hybrid-Spatial Transformer model for image captioning. In this work, we combine the Global information and Local information of image as input of encoder which extracted by VGG16 and Faster R-CNN respectively. To further improve the performance of model, we add spatial information to attention layer by incorporating geometry features to attention weight. What’s more, queries Q, keys K, values V are a bit different from standard transformer, which is reflected in theses aspects. The positional encoding or embedding is not added to values V both encoder and decoder, the positional embedding is added to keys K on cross-attention. The experimental results illustrate that our model can achieve state-of-the art performance on CIDEr-D, METEROR and BLEU-1 on MS-COCO dataset.","PeriodicalId":348024,"journal":{"name":"Proceedings of the 5th International Conference on Control and Computer Vision","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid-Spatial Transformer for Image Captioning\",\"authors\":\"Jincheng Zheng, Chi-Man Pun\",\"doi\":\"10.1145/3561613.3561617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years, the transformer-based model has achieved great success in many tasks such as machine translation. This encoder-decoder architecture is proved to be useful for image captioning tasks as well. We propose a novel Hybrid-Spatial Transformer model for image captioning. In this work, we combine the Global information and Local information of image as input of encoder which extracted by VGG16 and Faster R-CNN respectively. To further improve the performance of model, we add spatial information to attention layer by incorporating geometry features to attention weight. What’s more, queries Q, keys K, values V are a bit different from standard transformer, which is reflected in theses aspects. The positional encoding or embedding is not added to values V both encoder and decoder, the positional embedding is added to keys K on cross-attention. The experimental results illustrate that our model can achieve state-of-the art performance on CIDEr-D, METEROR and BLEU-1 on MS-COCO dataset.\",\"PeriodicalId\":348024,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Control and Computer Vision\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Control and Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3561613.3561617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3561613.3561617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent years, the transformer-based model has achieved great success in many tasks such as machine translation. This encoder-decoder architecture is proved to be useful for image captioning tasks as well. We propose a novel Hybrid-Spatial Transformer model for image captioning. In this work, we combine the Global information and Local information of image as input of encoder which extracted by VGG16 and Faster R-CNN respectively. To further improve the performance of model, we add spatial information to attention layer by incorporating geometry features to attention weight. What’s more, queries Q, keys K, values V are a bit different from standard transformer, which is reflected in theses aspects. The positional encoding or embedding is not added to values V both encoder and decoder, the positional embedding is added to keys K on cross-attention. The experimental results illustrate that our model can achieve state-of-the art performance on CIDEr-D, METEROR and BLEU-1 on MS-COCO dataset.